
JSE17_OCP.book Page 1673 Friday, December 2, 2022 4:23 PM
 Appendix D

Annotated Answers
to Review Questions

1 Basics of Java Programming

1.1 (c)
A method is an operation defining a particular behavior of an abstraction. Java
implements abstractions using classes that have properties and behaviors. Behav-
iors are defined by the operations of the abstraction.

1.2 (b)
An object is an instance of a class. Objects are created from classes that implement
abstractions. The objects that are created are concrete realizations of those abstrac-
tions. An object is neither a reference nor a variable.

1.3 (b)
(2) is the first line of a constructor declaration. A constructor in Java is declared like
a method that does not return a value. It has the same name as the class name, but
it does not specify a return type and therefore does not return a value. (1) is the
header of a class declaration, (3) is the first statement in the constructor body, and
(4), (5), and (6) are instance method declarations.

1.4 (b) and (f)
Two objects are created and three references are declared by the code. Objects are
normally created by using the new operator. The declaration of a reference creates
a variable regardless of whether a reference value is assigned to it or not.

1.5 (d)
An instance member is a field or an instance method. These members belong to all
instances of the class. Members that are not explicitly declared static in a class dec-
laration are instance members.

1.6 (c)
An object communicates with another object by calling an instance method of the
other object, passing and receiving any information that might be necessary.
1673

1674 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1674 Friday, December 2, 2022 4:23 PM
1.7 (d) and (f)
Given the declaration class B extends A {...}, we can conclude that class B
extends class A, class A is the superclass of class B, class B is a subclass of class A, and
class B inherits from class A, which means that objects of class B inherit the field
value1 from class A.

1.8 (d)
The compiler supplied with the JDK is named javac. The names of the source files
to be compiled are listed on the command line after the command javac. (c) will
compile and execute the program, but will not create a class file.

1.9 (a)
Java programs are executed by the Java Virtual Machine (JVM). In the JDK, the
command java is used to start the execution by the JVM. The java command
requires the name of a class that has a valid main() method. The JVM starts the pro-
gram execution by calling the main() method of the given class. The exact name of
the class should be specified, and not the name of the class file—that is, the .class
extension in the class file name should not be specified. Since it is specified that the
source file is compiled creating a class file, (c) would not work.

1.10 (a) and (d)
The file with a single-file source-code program can contain more than one class
declaration and the first class declaration must provide a valid main() method.
Such a program cannot access previously compiled user-defined classes, only
those in the standard library. It cannot consist of multiple files obviously, but pro-
gram arguments can be supplied on the command line.

1.11 (e)
(a) is incorrect because the JVM must be compatible with the Java Platform on
which the program was developed.
(b) is incorrect because the JIT feature of the JVM translates bytecode to machine
code.
(c) is incorrect because other languages, like Scala, also compile to bytecode and
can be executed by the JVM.
(d) is incorrect because a Java program can only create objects, but destroying
objects is at the discretion of the automatic garbage collector.

2 Basic Elements, Primitive Data Types, and Operators

2.1 (e)
Everything from the start sequence (/*) of a multiple-line comment to the first
occurrence of the end sequence (*/) of a multiple-line comment is ignored by the
compiler. Everything from the start sequence (//) of a single-line comment to the
end of the line is ignored by the compiler. In (e), the multiple-line comment ends
with the first occurrence of the end sequence (*/), leaving the second occurrence of
the end sequence (*/) unmatched.

 2 BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS 1675

JSE17_OCP.book Page 1675 Friday, December 2, 2022 4:23 PM
2.2 (d)
An assignment statement is an expression statement. The value of the expression
statement is the value of the expression on the right-hand side. Since the assign-
ment operator is right associative, the statement a = b = c = 20 is evaluated as
follows: (a = (b = (c = 20))). This results in the value 20 being assigned to c, then
the same value being assigned to b and finally to a. The program will compile and
print 20 at runtime.

2.3 (c)
In an assignment statement, the reference value of the source reference is assigned
to the destination reference. Assignment does not create a copy of the object
denoted by the source reference. After the assignment, both references denote the
same object—that is, they are aliases.
The variables a, b, and c are references of type String. The reference value of the
"cat" object is first assigned to a, then to b, and later to c. Just before the print state-
ment, a denotes "dog", whereas both b and c denote "cat". The program prints the
string denoted by c—that is, "cat".

2.4 (a), (d), and (e)
A binary expression with any floating-point operand will be evaluated using
floating-point arithmetic. Expressions such as 2/3, where both operands are inte-
gers, will use integer arithmetic and evaluate to an integer value. In (e), the result
of (0x10 * 1L) is promoted to a floating-point value.

2.5 (b)
The / operator has higher precedence than the + operator. This means that the
expression is evaluated as ((1/2) + (3/2) + 0.1). The associativity of the binary
operators is from left to right, giving (((1/2) + (3/2)) + 0.1). Integer division
results in ((0 + 1) + 0.1), which evaluates to 1.1.

2.6 (b)
The expression evaluates to -6. The whole expression is evaluated as (((-(-1)) -
((3 * 10) / 5)) - 1) according to the precedence and associativity rules.

2.7 (d)
The expression ++k + k++ + + k is evaluated as ((++k) + (k++)) + (+k) → ((2) +
(2) + (3)), resulting in the value 7.

2.8 (d)
The types char and int are both integral. A char value can be assigned to an int
variable since the int type is wider than the char type and an implicit widening
conversion will be done. An int type cannot be assigned to a char variable because
the char type is narrower than the int type. The compiler will report an error about
a possible loss of precision at (4).

2.9 (a)
First, the expression ++i is evaluated, resulting in the value 2. Now the variable i
also has the value 2. The target of the assignment is now determined to be the ele-

1676 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1676 Friday, December 2, 2022 4:23 PM
ment array[2]. Evaluation of the right-hand expression, --i, results in the value 1.
The variable i now has the value 1. The value of the right-hand expression 1 is then
assigned to the array element array[2], resulting in the array contents to become
{4, 8, 1}. The program computes and prints the sum of these values—that is, 13.

2.10 (c) and (e)
The remainder operator is not limited to integral values, but can also be applied to
floating-point operands. Short-circuit evaluation occurs with the conditional oper-
ators (&&, ||). The operators *, /, and % have the same level of precedence. The data
type short is a 16-bit signed two’s complement integer, thus the range of values is
from -32768 to +32767, inclusive. (+15) is a legal expression using the unary + oper-
ator.

2.11 (a), (c), and (e)
The != and ^ operators, when used on boolean operands, will return true if and
only if one operand is true, and false otherwise. This means that d and e in the pro-
gram will always be assigned the same value, given any combination of truth val-
ues in a and b. The program will, therefore, print true four times.

2.12 (b)
The element referenced by a[i] is determined based on the current value of i,
which is 0—that is, the element a[0]. The expression i = 9 will evaluate to the value
9, which will be assigned to the variable i. The value 9 is also assigned to the array
element a[0]. After execution of the statement, the variable i will contain the value
9, and the array a will contain the values 9 and 6. The program will print 9 9 6
when run.

2.13 (c) and (d)
Note that the logical and conditional operators have lower precedence than the
relational operators. Unlike the & and | operators, the && and || operators short-cir-
cuit the evaluation of their operands if the result of the operation can be deter-
mined from the value of the first operand. The second operand of the || operator
in the program is never evaluated because the value of t remains true. All the oper-
ands of the other operators are evaluated. Variable i ends up with the value 3,
which is the first digit printed, and j ends up with the value 1, which is the second
digit printed.

2.14 (b)
Both || and && are short-circuit conditional operators. In the conditional expression
(x < y || ++z > 4) of the first if statement, since the first operand x < y evaluates
to true, the second operand ++z > 4 is not evaluated, as the conditional operator is
||. The if condition is true and the if block is executed, printing a123.
In the conditional expression (x < y || ++z > 4) of the second if statement, since
the first operand x < y evaluates to true, the second operand ++z > 4 is evaluated,
as the conditional operator is &&. The second operand is false (4 > 4); therefore,
the if condition is false and the if block is not executed.

 3 DECLARATIONS 1677

JSE17_OCP.book Page 1677 Friday, December 2, 2022 4:23 PM
2.15 (c), (e), and (f)
In (a), the third operand has the type double, which is not assignment compatible
with the type int of the variable result1. Blocks are not legal operands in the con-
ditional operator, as in (b). In (c), the last two operands result in wrapper objects
with type Integer and Double, respectively, which are assignment compatible with
the type Number of the variable number. The evaluation of the conditional expression
results in the reference value of an Integer object with value 20 being assigned to
the number variable. All three operands of the operator are mandatory, which is not
the case in (d). In (e), the last two operands are of type int, and the evaluation of
the conditional expression results in an int value (21), whose text representation is
printed. In (f), the value of the second operand is boxed into a Boolean. The evalu-
ation of the conditional expression results in a string literal ("i not equal to j"),
which is printed. The println() method creates and prints a text representation of
any object whose reference value is passed as a parameter.

2.16 (d)
The condition in the outer conditional expression is false. The condition in the
nested conditional expression is true, resulting in the value of m1 (i.e., 20) being
printed.

3 Declarations

3.1 (c)
The local variable of type float will remain uninitialized. Fields and static vari-
ables are initialized with a default value. An instance variable of type int[] is a ref-
erence variable that will be initialized with the null value. Local variables remain
uninitialized unless explicitly initialized.

3.2 (e)
The program will compile. The compiler can figure out that the local variable price
will always be initialized, since the value of the condition in the if statement is
true. The two instance variables and the two static variables are all initialized to
the respective default value of their type.

3.3 (a) and (e)
The first and the third pairs of methods will compile. The second pair of methods
will fail to compile, since their method signatures do not differ. The compiler has
no way of differentiating between the two methods. Note that the return type and
the names of the parameters are not a part of the method signature. Both methods
in the first pair are named fly and have a different number of parameters, thus
overloading this method name. The methods in the last pair do not overload the
method name glide, since only one method has that name. The method named
Glide is distinct from the method named glide, as identifiers are case sensitive in
Java.

1678 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1678 Friday, December 2, 2022 4:23 PM
3.4 (b) and (e)
A constructor can be declared private, but this means that this constructor can only
be used within the class. Constructors need not initialize all the fields when a class
is instantiated. A field will be assigned a default value if not explicitly initialized.
A constructor is non-static, and as such it can directly access both the static and
non-static members of the class.

3.5 (c)
A compile-time error will occur at (3), since the class does not have a constructor
accepting a single argument of type int. The declaration at (1) declares a method,
not a constructor, since it is declared as void. The method happens to have the same
name as the class, but that is irrelevant. The class has the default constructor, since
the class contains no constructor declarations. This constructor will be invoked to
create a MyClass object at (2).

3.6 (b)
The keyword this can only be used in non-static code, as in non-static methods,
constructors, and instance initializer blocks. Only one occurrence of each static
variable of a class is created, when the class is loaded by the JVM. This occurrence
is shared among all the objects of the class (and for that matter, by other clients).
Local variables are only accessible within the local scope, regardless of whether the
local scope is defined within a static context.

3.7 (e)
The [] notation can be placed both after the type name and after the variable name
in an array declaration. Multidimensional arrays are created by constructing
arrays that can contain references to other arrays. The expression new int[4][] will
create an array of length 4, which can contain references to arrays of int values. The
expression new int[4][4] will also create a two-dimensional array, but will in addi-
tion create four more one-dimensional arrays, each of length 4 and of the type
int[]. References to each of these arrays are stored in the two-dimensional array.
The expression int[][4] will not work, because the arrays for the dimensions must
be created from left to right.

3.8 (a), (c), and (d)
The size of the array cannot be specified, as in (b) and (e). The size of the array is
given implicitly by the initialization code. The size of the array is never specified
in the declaration of an array reference. The size of an array is always associated
with the array instance (on the right-hand side), not the array reference (on the left-
hand side).

3.9 (e)
The array declaration is valid, and will declare and initialize an array of length 20
containing int values. All the values of the array are initialized to their default
value of 0. The for(;;) loop will print all the values in the array—that is, it will
print 0 twenty times.

 3 DECLARATIONS 1679

JSE17_OCP.book Page 1679 Friday, December 2, 2022 4:23 PM
3.10 (d)
The program will print 0 false 0 null when run. All the instance variables, and
the array element, will be initialized to their default values. When concatenated
with a string, the values are converted to their text representation. Notice that the
null literal is converted to the string "null", rather than throwing a NullPointer-
Exception.

3.11 (b)
Evaluation of the actual parameter i++ yields 0, and increments i to 1 in the pro-
cess. The value 0 is copied into the formal parameter i of the method addTwo() dur-
ing method invocation. However, the formal parameter is local to the method, and
changing its value does not affect the value in the actual parameter. The value of
the variable i in the main() method remains 1.

3.12 (d)
The variables a and b are local variables of type int. When these variables are
passed as arguments to another method, the method receives copies of the primi-
tive values in the variables. The actual variables are unaffected by operations per-
formed on the copies of the primitive values within the called method. The
variable bArr contains a reference value that denotes an array object containing
primitive values. When the variable is passed as a parameter to another method,
the method receives a copy of the reference value. Using this reference value, the
method can manipulate the object that the reference value denotes. This allows the
elements in the array object referenced by bArr to be accessed and modified in the
method inc2().

3.13 (c)
In (a) and (b), the arguments are encapsulated as elements in the implicitly created
array that is passed to the method. In (c), the int array object itself is encapsulated
as an element in the implicitly created array that is passed to the method. (a), (b),
and (c) are fixed arity calls. Note that int[] is not a subtype of Object[]. In (d), (e),
and (f), the argument is a subtype of Object[], and the argument itself is passed
without the need for an implicitly created array—that is, these are fixed arity
method calls. However, in (d) and (e), the compiler issues a warning that both fixed
arity and variable arity method calls are feasible, but chooses fixed arity method
calls.

3.14 (b)
Local variable type inference with var is not allowed in a multiple-declaration
statement, as at (2).

3.15 (d), (e), and (f)
The restricted keyword var cannot be used as a return type or as the type of a for-
mal parameter, ruling out (a), (b), and (c).
The signature of the method call divide(int, int) is assignment compatible with
the method signatures divide(int, int), divide(int, double), and divide(double,
int) in (d), (e), and (f), respectively. The double value of the expression in the return

1680 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1680 Friday, December 2, 2022 4:23 PM
statement in the divide() method is assignment compatible with the return type
double of the method headers in (d), (e), and (f).

4 Control Flow

4.1 (d)
The program will display the letter b when run. The second if statement is evalu-
ated since the boolean expression of the first if statement is true. The else clause
belongs to the second if statement. Since the boolean expression of the second if
statement is false, the if block is skipped and the else clause is executed.

4.2 (c)
The case label value 2 * iLoc is a constant expression whose value is 6, the same
as the switch expression. Fall-through results in the program output shown in (c).

4.3 (c)
(a) contains a switch statement. Note that there is no break statement associated
with the first case label, thus execution falls through to the second case label and
assigns the string "Composite" to the reference result, which is then printed.
(b) uses a switch expression to yield a result. However, it does not provide an
exhaustive set of case labels and will fail to compile without the default label.
(c) uses the identifier yield as both a variable name and a contextual keyword in
the yield statement. There is no fall-through, and the switch expression yields the
string "Prime" which is printed.
(d) is mixing two different types of notations for the switch constructs: the arrow
notation and the colon notation, which is not permitted.

4.4 (a)
The value 1 of the price variable matches the case constant 1 in the first case label,
and in this case the discount is calculated by subtracting 1 from the value of price,
which results in the value of 0. This code uses a switch expression with the arrow
notation, so no fall-through to the next case label can occur. Case labels do not need
to be listed in any particular order. The switch expression is exhaustive, because the
case labels and the default label cover the range of int values. Code will compile
and when executed will yield the value 0.

4.5 (e)
The loop body is executed twice and the program will print 3. The first time the
loop is executed, the variable i changes value from 1 to 2 and the variable b changes
value from false to true. Then the loop condition is evaluated. Since b is true, the
loop body is executed again. This time the variable i changes value from 2 to 3 and
the variable b changes value from true to false. The loop condition is now evalu-
ated again. Since b is now false, the loop terminates and the current value of i is
printed.

 4 CONTROL FLOW 1681

JSE17_OCP.book Page 1681 Friday, December 2, 2022 4:23 PM
4.6 (b) and (e)
Both the first and the second numbers printed will be 10. Both the loop body and
the update expression will be executed exactly 10 times. Each execution of the loop
body will be directly followed by an execution of the update expression. After-
wards, the condition j < 10 is evaluated to see whether the loop body should be
executed again.

4.7 (f)
The code will compile without error, but will never terminate when run. All the
sections in the for header are optional and can be omitted (but not the semicolons).
An omitted loop condition is interpreted as being true. Thus a for(;;) loop with
an omitted loop condition will never terminate, unless an appropriate control
transfer statement is encountered in the loop body. The program will enter an infi-
nite loop at (4).

4.8 (a) and (d)
"i=1, j=0" and "i=2, j=1" are part of the output. The variable i iterates through the
values 0, 1, and 2 in the outer loop, while j toggles between the values 0 and 1 in
the inner loop. If the values of i and j are equal, the printing of the values is
skipped and the execution continues with the next iteration of the outer loop. The
following can be deduced when the program is run: variables i and j are both 0
and the execution continues with the update expression of the outer loop. "i=1,
j=0" is printed and the next iteration of the inner loop starts. Variables i and j are
both 1 and the execution continues with the update expression of the outer loop.
"i=2, j=0" is printed and the next iteration of the inner loop starts. "i=2, j=1" is
printed, j is incremented, j < 2 is false, and the inner loop ends. Variable i is incre-
mented, i < 3 is false, and the outer loop ends.

4.9 (c) and (d)
The element type of the array nums must be assignment compatible with the type
of the loop variable (i.e., int). Only the element type in (c), Integer, can be automat-
ically unboxed to an int. The element type in (d) is int.

4.10 (d) and (e)
In the header of a for(:) loop, we can only declare one local variable. This rules out
(a) and (b), as they specify two local variables. Also, the array expression in (a), (b),
and (c) is not valid. Only (d) and (e) specify a legal for(:) header.

4.11 (a), (b), and (c)
Changing the value of the variable does not affect the data structure being iterated
over. The for(:) loop cannot run backwards. We cannot iterate over several data
structures simultaneously in a for(:) loop, as the syntax does not allow it.

1682 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1682 Friday, December 2, 2022 4:23 PM
5 Object-Oriented Programming

5.1 (a) and (c)
Bar is a subclass of Foo that overrides the method g(). The statement a.j = 5 is not
legal, since the member j in the class Bar cannot be accessed through a Foo refer-
ence. The statement b.i = 3 is not legal either, since the private member i cannot
be accessed from outside of the class Foo.

5.2 (g)
It is not possible to invoke the doIt() method in A from an instance method in class
C. The method in C needs to call a method in a superclass two levels up in the inher-
itance hierarchy. The super.super.doIt() strategy will not work, since super is a
keyword and cannot be used as an ordinary reference, nor accessed like a field. If
the member to be accessed had been a field or a static method, the solution would
be to cast the this reference to the class of the field and use the resulting reference
to access the field, as illustrated in (f). Field access is determined by the declared
type of the reference, whereas the instance method to execute is determined by
the actual type of the object denoted by the reference at runtime.

5.3 (e)
The code will compile without errors. None of the calls to a max() method are
ambiguous. When the program is run, the main() method will call the max()
method on the C object referred to by the reference b with the parameters 13 and 29.
This method will call the max() method in B with the parameters 23 and 39. The
max() method in B will in turn call the max() method in A with the parameters 39 and
23. The max() method in A will return 39 to the max() method in B. The max() method
in B will return 29 to the max() method in C. The max() method in C will return 29 to
the main() method.

5.4 (g)
In the class Car, the static method getModelName() hides the static method of the
same name in the superclass Vehicle. In the class Car, the instance method get-
RegNo() overrides the instance method of the same name in the superclass Vehicle.
The declared type of the reference determines the method to execute when a static
method is called, but the actual type of the object at runtime determines the
method to execute when an overridden method is called.

5.5 (e)
The class MySuper does not have a no-argument constructor. This means that con-
structors in subclasses must explicitly call the superclass constructor and provide
the required parameters. The supplied constructor accomplishes this by calling
super(num) in its first statement. Additional constructors can accomplish this either
by calling the superclass constructor directly using the super() call, or by calling
another constructor in the same class using the this() call which in turn calls the
superclass constructor. (a) and (b) are not valid, since they do not call the super-
class constructor explicitly. (d) fails, since the super() call must always be the first

 5 OBJECT-ORIENTED PROGRAMMING 1683

JSE17_OCP.book Page 1683 Friday, December 2, 2022 4:23 PM
statement in the constructor body. (f) fails, since the super() and this() calls cannot
be combined.

5.6 (b)
In a subclass without any declared constructors, the implicit default constructor
will call super(). Use of the super() and this() statements is not mandatory as long
as the superclass has a no-argument constructor. If neither super() nor this() is
declared as the first statement in the body of a constructor, then the default super()
will implicitly be the first statement. A constructor body cannot have both a
super() and a this() statement. Calling super() will not always work, since a
superclass might not have a no-argument constructor.

5.7 (d)
The program will print 12 followed by Test. When the main() method is executed,
it will create a new instance of B by passing "Test" as an argument. This results in
a call to the constructor of B that has one String parameter. The constructor does
not explicitly call any superclass constructor nor any overloaded constructor in B
using a this() call, but instead the no-argument constructor of the superclass A is
called implicitly. The no-argument constructor of A calls the constructor in A that
has two String parameters, passing it the argument list ("1", "2"). This constructor
calls the constructor with one String parameter, passing the argument "12". This
constructor prints the argument, after implicitly invoking the no-argument con-
structor of the superclass Object. Now the execution of all the constructors in A is
completed, and execution continues in the constructor of B. This constructor now
prints the original argument "Test" and returns to the main() method.

5.8 (c)
Any non-final class can be declared abstract. A class cannot be instantiated if the
class is declared abstract. The declaration of an abstract method cannot provide
an implementation. The declaration of a non-abstract method must provide an
implementation. If any method in a class is declared abstract, then the class must
be declared abstract, so (a) is invalid. The declaration in (b) is not valid, since it
omits the keyword abstract in the method declaration. The declaration in (d) is not
valid, since it omits the keyword class. In (e), the return type of the method is miss-
ing.

5.9 (b)
Since the method is abstract, it cannot be inserted at (1) because class Animal is not
abstract—thus ruling out (a) and (c). Class Cat is abstract, and the method can be
inserted at (2)—thus ruling out (d).

5.10 (d)
We cannot create an object of an abstract class with the new operator.

5.11 (d)
An instance of Bacteria can be assigned to the org variable at (2), since a supertype
reference can refer to a subtype object. There is no @Overload annotation.

1684 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1684 Friday, December 2, 2022 4:23 PM
5.12 (a) and (b)
The extends clause is used to specify that a class extends another class. A subclass
can be declared abstract regardless of whether the superclass was declared
abstract. Private, overridden, and hidden members from the superclass are not
inherited by the subclass. A class cannot be declared both abstract and final, since
an abstract class needs to be extended to be useful, and a final class cannot be
extended. The accessibility of the class is not limited by the accessibility of its mem-
bers. A class with all members declared private can still be declared public.

5.13 (c)
Only a final class cannot be extended, as in (c). (d) will fail to compile. A class can-
not be declared both final and abstract, as in (d).

5.14 (c)
Line (3), void k() { i++; }, can be re-inserted without introducing errors. Re-
inserting line (1) will cause the compilation to fail, since MyOtherClass will try to
override a final method. Re-inserting line (2) will fail, since MyOtherClass will no
longer have the no-argument constructor. The main() method needs to call the no-
argument constructor. Re-inserting line (3) will work without any problems, but
reinserting line (4) will fail, since the method will try to access a private member
of the superclass.

5.15 (a) and (c)
Abstract classes can declare both final methods and non-abstract methods. Non-
abstract classes cannot, however, contain abstract methods. Nor can abstract
classes be final. Only interfaces can declare default methods.

5.16 (d)
There is no problem compiling the code.

5.17 (a)
A final class cannot have abstract methods, as a final class is a concrete class, pro-
viding implementation for all methods in the class.

5.18 (b) and (g)
The keywords protected and final cannot be applied to interface methods. The
keyword public is implied, but can be specified for abstract and default interface
methods. The keywords private, default, abstract, and static can be specified for
private, default, abstract, and static methods, respectively. The keywords pri-
vate, default, and static are required for private, default, and static methods,
respectively, but the keyword abstract is optional as an abstract method is under-
stood to be implicitly abstract.

5.19 (e)
The static method printSlogan() is not inherited by the class Firm. It can only be
invoked by using a static reference—that is, the name of the interface in which it is
declared, regardless of whether the call is in a static or a non-static context.

 5 OBJECT-ORIENTED PROGRAMMING 1685

JSE17_OCP.book Page 1685 Friday, December 2, 2022 4:23 PM
5.20 (c)
The instance method at (3) overrides the default method at (1). The static method
at (2) is not inherited by the class RaceA. The instance method at (4) does not over-
ride the static method at (2).
The method to invoke by the call at (5) is determined at runtime by the object type
of the reference, which in this case is Athlete, resulting in the method at (3) being
invoked. Similarly, the call at (6) will invoke the instance method at (4).

5.21 (d)
The code will compile without errors. The class MyClass declares that it implements
the interfaces Interface1 and Interface2. Since the class is declared abstract, it
does not need to implement all abstract method declarations defined in these
interfaces. Any non-abstract subclasses of MyClass must provide the missing
method implementations. The two interfaces share a common abstract method
declaration, void g(). MyClass provides an implementation for this abstract
method declaration that satisfies both Interface1 and Interface2. Both interfaces
provide declarations of constants named VAL_B. This can lead to ambiguity when
referring to VAL_B by its simple name from MyClass. The ambiguity can be resolved
by using the qualified names Interface1.VAL_B and Interface2.VAL_B. However,
there are no problems with the code as it stands.

5.22 (b)
The compiler will allow the statement, as the cast is from the supertype (Super) to
the subtype (Sub). However, if at runtime the reference x does not denote an object
of the type Sub, a ClassCastException will be thrown.

5.23 (b)
The expression (o instanceof B) will return true if the object referred to by o is of
type B or a subtype of B. The expression (!(o instanceof C)) will return true unless
the object referred to by o is of type C or a subtype of C. Thus the expression (o
instanceof B) && (!(o instanceof C)) will only return true if the object is of type
B or a subtype of B that is not C or a subtype of C. Given objects of the classes A, B,
and C, this expression will only return true for objects of class B.

5.24 (d)
The program will print all the letters I, J, C, and D at runtime. The object referred to
by the reference x is of class D. Class D extends class C and implements J, and class
C implements interface I. This makes I, J, and C supertypes of class D. The reference
value of an object of class D can be assigned to any reference of its supertypes and
is, therefore, an instanceof these types.

5.25 (c)
The calls to the compute() method in the method declarations at (2) and at (3) are to
the compute() method declaration at (1), as the argument is always an int[].
The method call at (4) calls the method at (2). The signature of the call at (4) is

compute(int[], int[])

which matches the signature of the method at (2). No implicit array is created.

1686 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1686 Friday, December 2, 2022 4:23 PM
The method call at (5) calls the method at (1). An implicit array of int is created to
store the argument values.
The method calls at (6) and (7) call the method at (3). Note the type of the variable
arity parameter at (3): an int[][]. The signature of the calls at (6) and (7) is

compute(int[], int[][])

which matches the signature of the method at (3). No implicit array is created.

5.26 (f)
The instanceof pattern match operator can introduce a pattern variable in certain
boolean expressions. In the conditional of the if statement, both operands of the
short-circuit && operator must be true for the pattern variable s to be introduced in
the if block—the scope of variable s is then the if block, and s is not accessible in
the else block. The variable s is thus out of scope in the else block, and the code
will not compile.

5.27 (d)
For the instanceof pattern match operator, the pattern type (i.e., the type specified
for the right operand) must be a subtype of the expression type (i.e., the type of the
left operand). This is not the case in (a), (b), or (e). In (a) and (b), both the pattern
type and the expression type are Integer, and in (e), the pattern type Number is a
supertype of the expression type Integer. Thus (a), (b), and (e) will result in a com-
pile-time error.
In (c), the expression type Integer is incompatible with the pattern type String for
comparing types, as one cannot be cast to the other, thus resulting in a compile-
time error.
In (d), the pattern type Integer is a subtype of the expression type Number and will
compile without any problem.

5.28 (a) and (c)
An instanceof pattern match operator returns false if the reference is null; there-
fore, it will not throw a NullPointerException. A pattern variable is only introduced
when the instanceof pattern match operator returns true.

5.29 (e)
The program will print 2 when System.out.println(ref2.f()) is executed. The
object referenced by ref2 is of class C, but the reference is of type B. Since B contains
a method f(), the method call will be allowed at compile time. During execution,
it is determined that the object is of class C, and dynamic method lookup will cause
the overriding method in C to be executed.

5.30 (c)
The program will print 1 when run. The f() methods in A and B are private, and
are not accessible by the subclasses. Because of this, the subclasses cannot overload
or override these methods, but simply define new methods with the same signa-
ture. The object being called is of class C. The reference used to access the object is
of type B. Since B contains a method g(), the method call will be allowed at compile
time. During execution, it is determined that the object is of class C, and dynamic

 5 OBJECT-ORIENTED PROGRAMMING 1687

JSE17_OCP.book Page 1687 Friday, December 2, 2022 4:23 PM
method lookup will cause the overriding method g() in B to be executed. This
method calls a method named f. It can be determined during compilation that this
can only refer to the f() method in B, since the method is private and cannot be
overridden. This method returns the value 1, which is printed.

5.31 (b), (c), and (d)
The code as it stands will compile. The use of inheritance in this code defines a
Planet is-a Star relationship. The code will fail if the name of the field starName is
changed in the Star class, since the subclass Planet tries to access it using the name
starName. An instance of Planet is not an instance of HeavenlyBody. Neither Planet
nor Star implements HeavenlyBody.

5.32 (d)
An enum type can be run as a standalone application, if it provides the appropriate
main() method. The constants need not be qualified when referenced inside the
enum type declaration. The constants are static members. The toString() method
always returns the name of the constant, unless it is overridden.

5.33 (b)
(1), (2), and (3) define constant-specific class bodies that override the toString()
method. For constants that do not override the toString() method, the name of the
constant is returned.

5.34 (c)
An enum type cannot be instantiated to create more objects than those already cre-
ated implicitly for its constants. All enum types override the equals() method from
the Object class. The equals() method of an enum type compares its constants for
equality according to reference equality (the same as with the == operator) based
on their ordinal values. This equals() method is final.

5.35 (d) and (e)
In (a), the compiler recognizes a non-canonical constructor with no parameters in
the record class definition. The first statement in such a non-canonical constructor
must be an explicit invocation of the canonical constructor using the this() expres-
sion. For example, the following constructor declaration will compile, but it will
not give the desired result.

public Product() {
 this(0, "No name", 0.00);
}

However, specifying the required parameters in the constructor header will result
in the normal canonical constructor that will compile, and the code will print the
right result:

public Product(int id, String name, double price) {
...
}

(b) does not compile because the parameter names in the normal canonical con-
structor do not match the ones defined in the header of the record class.

1688 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1688 Friday, December 2, 2022 4:23 PM
In (c), the compiler recognizes a record class that has no component fields. The con-
structor declared is a non-canonical constructor that must have an explicit invoca-
tion of the no-argument implicit canonical constructor using the this() expression.
For example, the following constructor declaration will compile, but will not give
the desired result.

public Product(int id, String name, double price) {
 this();
}

However, specifying the field components in the record class header will make the
code compile and give the right result:

public record Product(int id, String name, double price) {
...
}

(d) correctly initializes a record using the compact constructor. The name will be
stored in uppercase.
(e) correctly initializes a record using the implicit canonical constructor. The record
class overrides the method toString() that returns the name field value represented
as an uppercase String.
(f) correctly initializes a record using the implicit canonical record constructor, but
its overridden toString() method accesses the fields directly, without converting
the name field to uppercase. It does not invoke the name() method.

5.36 (d)
The compiler automatically generates an implementation of the equals() method
for a record class, if one is not provided. The equals() method added by the com-
piler will compare all component fields of the record class. This means that the
equals() method will return true, but the equality operator == will return false, as
the two records that are created are distinct objects that have the same state.

5.37 (c)
All component fields defined by a record class are immutable. A record class can
only declare static fields in addition to the component fields specified in its header.
The compiler automatically generates the get methods for the component fields of
the record class, but not the set methods, since such fields are immutable. Record
classes implicitly extend the java.lang.Record class. Record classes cannot have an
explicit extends clause.

5.38 (c)
Sealed classes can be abstract. In fact, this is often the case, as the abstract sealed
class is intended to be extended by its permitted subclasses. A non-sealed class can
also be abstract and can be freely extended. However, a sealed class can only be
extended by its permitted subclasses. A class that extends a sealed class must be
either final, sealed, or non-sealed.

5.39 (c)
In the code, subtypes Y and Z can be interfaces or classes that can either extend or
implement the sealed interface X. A class or an interface that is marked sealed must

 6 ACCESS CONTROL 1689

JSE17_OCP.book Page 1689 Friday, December 2, 2022 4:23 PM
be defined with the permits clause that specifies its permitted subtypes, unless the
permitted subtypes are specified in the same compilation unit. Since the classes
and interfaces are all public, each is defined in its own compilation unit.
In (a), interface Z is marked sealed, but does not provide the permits clause or its
permitted subtypes in the same compilation unit.
A permitted subtype of a sealed supertype must be explicitly marked as either
final, non-sealed, or sealed. In (b), interface Z is not marked with any of these
markers, so it will not compile. (d) has the exact same problem with class Y.
In (c), interface Z is correctly marked as sealed, with the appropriate permits clause,
and class Y correctly implements both its sealed superinterfaces X and Z.

6 Access Control

6.1 (a) and (c)
Bytecode of all reference type declarations in the file is placed in the designated
package, and all reference type declarations in the file can access the imported
types.

6.2 (e)
Both classes are in the same package app, so the first 2 import statements are unnec-
essary. The package java.lang is always imported in all compilation units, so the
next two import statements are unnecessary. The last static import statement is
necessary to access the static variable frame in the Window class by its simple name.

6.3 (b), (c), (d), and (e)
In (a), the import statement imports types from the mainpkg package, but Window is
not one of them.
In (b), the import statement imports types from the mainpkg.subpkg1 package, and
Window is one of them.
In (c), the import statement imports types from the mainpkg.subpkg2 package, and
Window is one of them.
In (d), the first import statement is a type-import-on-demand statement and the
second import statement is a single-type-import statement. Both import the type
Window. The second one overrides the first one.
In (e), the first import statement is a single-type-import statement and the second
import statement is a type-import-on-demand statement. Both import the type
Window. The first one overrides the second one.
In (f), both import statements import the type Window, making the import ambigu-
ous.
In (g), both single-type-import statements import the type Window. The second
import statement causes a conflict with the first one.

1690 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1690 Friday, December 2, 2022 4:23 PM
6.4 (c) and (e)
The name of the class must be fully qualified. A parameter list after the method
name is not permitted. (c) illustrates single static import, and (e) illustrates static
import on demand.

6.5 (b) and (d)
In (a) and (c), class A cannot be found. In (e) and (f), class B cannot be found—there
is no package under the current directory /top/wrk/pkg to search for class B. Note
that specifying pkg in the classpath in (d) is superfluous. The parent directory of the
package must be specified—that is, the location of the package.

6.6 (d) and (e)
Static field y in class a.b.X is accessed in the method xyz() of class a.b.c.Z. Static
import allows static members from reference type declarations in other packages
to be accessed by their simple names.
This rules out (a) as it is a type-import-on-demand statement for all reference type
declarations in package a.b, and also (b) as it is a type-import-on-demand state-
ment from class a.b.X. (a) imports class X, but (b) does not import any type, as class
X does not declare any non-static inner class members.
(d) is a static import-on-demand statement, meaning it imports all static members
of the class a.b.X, including y which can be accessed by its simple name. (e) is a sin-
gle-static-import statement, meaning only the designated static member y from
class a.b.X is imported and can be accessed by its simple name.

6.7 (a) and (d)
The class Farm in package habitat accesses classes Cat and Cow by their simple
names from package life.animals. (a) is a type-import-on-demand of all reference
type declarations from package life.animals, including Cat and Cow. (b) and (c) are
ruled out as these are static imports. (d) imports the classes Cat and Cow individu-
ally.

6.8 (d)
Packages are typically mapped to directories in a file system. A subpackage is an
autonomous package that just happens to map to a subdirectory of a directory that
represents some other package. There is no relationship between a package and its
subpackages. Each package is treated independently, regardless of whether it
appears to be implemented as a subdirectory, ruling out (a) and (b).
(c) is incorrect because reference types and static members of types in other pack-
ages can be accessed by their fully qualified names, rather than using import state-
ments.
Import statements are not present in the compiled code at all, as type names are
always replaced with fully qualified names by the compiler.

6.9 (b) and (e)
If no access modifier (public, protected, or private) is given in the member declar-
ation of a class, the member is only accessible by classes in the same package.

 7 EXCEPTION HANDLING 1691

JSE17_OCP.book Page 1691 Friday, December 2, 2022 4:23 PM
A subclass does not have access to members with package accessibility declared in
a superclass, unless they are in the same package.
Local variables cannot be declared static or have an access modifier.

6.10 (b)
Outside the package, the member j is accessible to any class, whereas the member
k is only accessible to subclasses of MyClass.
The field i has package access, and is only accessible by classes inside the package.
The field j has public access, and is accessible from anywhere. The field k has pro-
tected access, and is accessible from any class inside the package and from sub-
classes anywhere. The field l has private access, and is only accessible within the
class itself.

6.11 (b)
A private member is only accessible in the class in which it is declared. If no access
modifier has been specified for a member, the member has package accessibility.
The keyword default is not an access modifier. A member with package access is
only accessible from classes in the same package. Subclasses in other packages can-
not access a member with package accessibility.

6.12 (d)
A class that is declared as final cannot be extended. Making a class final is not
enough to prevent its state from being modified. A static modifier can be applied
to inner classes, but this is not relevant to the question of immutability. A field
within an immutable object can refer to a mutable object, which means that mem-
bers of an immutable object are not automatically immutable.

6.13 (a)
In (a), marking the field name private means it can only be accessible in the class. It
can only be initialized once by the constructor when the object is created, and
removing the setName() method means the value of private field name cannot be
changed. The state of the object is thus immutable.
In (b), the assignment in the setName() method will not compile as it changes the
value of the final field name which has already been initialized in the constructor.
In (c), the assignment in the constructor will not compile as it changes the value of
the final field name which has already been initialized in its declaration.

7 Exception Handling

7.1 (d)
The program will only print 1, 4, and 5, in that order. The expression 5/k will throw
an ArithmeticException, since k equals 0. Control is transferred to the first catch
clause, since it is the first catch clause that can handle the arithmetic exceptions.
This exception handler simply prints 1. The exception has now been caught and
normal execution can resume. Before leaving the try statement, the finally clause

1692 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1692 Friday, December 2, 2022 4:23 PM
is executed. This finally clause prints 4. The last statement of the main() method
prints 5.

7.2 (b) and (e)
If run with no program arguments, the program will print The end. If run with one
program argument, the program will print the specified argument followed by The
end. The finally clause will always be executed, no matter how control leaves the
try block.

7.3 (c) and (d)
Normal execution will only resume if the exception is caught by the method. The
uncaught exception will propagate up the JVM stack until some method handles
it. An overriding method need only declare that it can throw a subset of the
checked exceptions the overridden method can throw. The main() method can
declare that it throws checked exceptions just like any other method. The finally
clause will always be executed, no matter how control leaves the try block.

7.4 (b)
The only thing that is wrong with the code is the ordering of the catch and finally
clauses. If present, the finally clause must always appear last in a try-catch-
finally construct. Note that since B is a subclass of A, catching A is sufficient to catch
exceptions of type B.

7.5 (b)
An invocation of the average() method throws an ArithmeticException, which is
then caught in the main() method. The catch block prints "error". This means that
the execution of the average() method is stopped, and the method does not return
any value, leaving the local variable value still initialized to 1, which is printed.

7.6 (e)
A null value is passed as an argument to the reaction() method, resulting in a
PlayerException being thrown, containing the "Invalid action" message. This
exception is then caught in the main() method, where its error message is assigned
to the local variable message in the catch block. As this exception was successfully
handled, normal execution resumes. The print statement prints the error message
"Invalid action".

7.7 (c)
As a null value is passed to the readFile() method, it throws a FileNotFound-
Exception, which is a subclass of IOException. This exception is caught by the cor-
responding catch block in the main() method, printing "IO error: invalid file
name". Upon resumption of normal execution, the finally block prints " finally",
followed by the last print statement printing " the end".

7.8 (g)
The readFile() method executes normally, which means that no catch block is exe-
cuted in the main() method. The finally block prints "finally" and the last print
statement prints " the end".

 7 EXCEPTION HANDLING 1693

JSE17_OCP.book Page 1693 Friday, December 2, 2022 4:23 PM
7.9 (d)
A null value is passed to the readFile() method which then throws an unchecked
NullPointerException, which is a subclass of RuntimeException. It is not required to
explicitly specify unchecked exceptions in the throws clause or to handle them. The
NullPointerException is propagated to the invoking method main(), where it is
caught by the catch block that catches an Exception, since RuntimeException is a
subclass of Exception. The catch block prints "Other error: invalid file name".
Although this catch block contains a return statement, the finally block is exe-
cuted first, printing " finally", before returning from the main() method. Thus the
last print statement in the main() method is not executed.

7.10 (b), (c), and (e)
(b), (c), and (e) correspond to (2), (3), and (5). FileNotFoundException is thrown by
the constructor call FileReader(filename). The close() method of the Buff-
eredReader throws an IOException. Either the try-with-resources statement must
catch it or the exception must be specified in the throws clause of the method—the
catch-or-declare rule. (1), (4), and (6) do not fulfill this criteria. Also, the resource
variables are final and cannot be assigned to in the body of the try-with-resources
statement, ruling out (7). At (5), the resource declaration statements are valid.

7.11 (h)
The top-level try block in the method justDoIt() throws an IOException. The
nested try block in the finally clause throws an EOFException that is caught and
associated as a suppressed exception with the IOException. It is the IOException that
is propagated. The IOException is caught in the catch clause in the main() method
and its information is printed, including its suppressed exception EOFException.
The supertype exception references are used polymorphically to handle objects of
subtype exceptions.

7.12 (f)
In (a), the program does not compile because the checked Exception thrown in the
close() method does not comply with the catch-or-declare rule.
In (b), although the close() method will abide by the catch-or-declare rule, the
main() method does not.
In (c), adding throws Exception clause only to the main() method does not change
the fact that the close() method does not abide by the catch-or-declare rule.
In (d), both methods abide by the catch-or-declare rule. When run, the program
will throw an Exception that is not caught.
In (e), adding catch (Exception e) {} clause to the try statement in the main()
method does not change the fact that the close() method does not abide by the
catch-or-declare rule.
In (f), the close() method will abide by the catch-or-declare rule, and the main()
method will catch and handle the exception thrown at runtime.

1694 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1694 Friday, December 2, 2022 4:23 PM
7.13 (a), (b), and (c)
In (a), the exception parameter e is implicitly final and cannot be reassigned in the
multi-catch clause.
In (b), in the two assignments to the exception parameter e, objects of the super-
class IOException cannot be assigned to references of subtypes EOFException and
FileNotFoundException.
In (c), in the assignment to the exception parameter e of type Exception, an object
of the subtype IOException is assigned to e, but an exception of type Exception is
thrown in the catch clause. This exception is not covered by the subtype
IOException specified in the throws clause. In other words, Exception thrown in the
catch clause is not handled.
In (d), the compiler can infer that only FileNotFoundException can be thrown in the
try statement. Such an exception can only be thrown in the catch clause, as the
parameter e of type Exception can be inferred to be effectively final, and can thus
only refer to a FileNotFoundException. This exception is covered by the throws
clause.
In (e), the compiler can infer that only FileNotFoundException can be thrown in the
try statement. This exception is caught by parameter e of the superclass
IOException. IOException is covered by the throws clause that specifies its supertype
Exception.

7.14 (a)
In this code example, the Resource object is used in a try-with-resources statement.
Its action() method will print "action " and it will be closed by the implicit finally
block by invoking the close() method that prints "closure ". There are no excep-
tions thrown. The last print statement prints " the end".

7.15 (b)
The Resource object is used in the try-with-resources statement, which means it
will be closed by the implicit finally block invoking the close() method after the
execution of the try block.
There are two exceptions thrown in the code: The first is an IOException that is
thrown by the action() method, and the second is thrown by the close() method
of the Resource class. The IOException is then caught in the main() method. How-
ever, notice that the IOException handler does not attempt to retrieve and print
information about suppressed exceptions thrown by the implicit finally block of
the try-with-resources statement. The catch block prints "IO action error ". Once
the exception is handled, execution of the rest of the method main() resumes. The
last print statement prints " the end".

7.16 (b)
There is no reason why explicit and implicit finally blocks cannot coexist. If an
explicit finally block is added after the try-with-resources statement, its code is
executed after the implicit finally block.

 8 SELECTED API CLASSES 1695

JSE17_OCP.book Page 1695 Friday, December 2, 2022 4:23 PM
8 Selected API Classes

8.1 (e)
Neither the hashCode() method nor the equals() method is declared final in the
Object class, and it cannot be guaranteed that implementations of these methods
will differentiate between all objects. All arrays are genuine objects and inherit
from the Object class, including the clone() method.

8.2 (b)
Values in the range –128 to +127, inclusive, are boxed in Integer objects and cached
by the method Integer.valueOf().

8.3 (c)
There is a minor performance penalty associated with the conversion of a primitive
value to a wrapper object and vice versa. Wrapper references can be assigned the
null value, but they cannot be assigned to a variable of a primitive type. An
attempt to convert an uninitialized wrapper reference to a primitive value will
result in a NullPointerException. However, if the reference is a local variable then
the code will not compile.

8.4 (b)
Integer objects with a value between –128 and +127 are interned. Therefore, two
references that reference the same interned Integer object will return true when
compared with the == operator—that is, they are aliases. The reference i1 is
assigned the reference value of a new Integer object with value 10. This Integer
object is interned. The reference i2 is assigned the reference value of this interned
Integer object, instead of creating a new Integer object. The expression i1 == i2 is
thus true, resulting in A being printed. The expression i1 == i3 is also true, since
the Integer object referenced by i1 is unboxed to the int value 10 which is also the
value in i3, resulting in B being printed.
However, values boxed by the references x1 and x2 are greater than 127, and there-
fore these references refer to two different Integer objects which are not interned.
The expression x1 == x2 returns the value false. The expression x1 == x3 returns
true, since the Integer object referenced by x1 is unboxed to the int value 1000
which is also the value in x3, resulting in D being printed.

8.5 (d)
The expression str.substring(2,5) will extract the substring "kap". The method
extracts the characters from index 2 to index 4, inclusive.

8.6 (d)
The program will print str3str1 when run. The concat() method will create and
return a new String object, which is the concatenation of the current String object
and the String object passed as an argument. The expression statement str1.con-
cat(str2) creates a new String object, but its reference value is not stored after the
expression is evaluated. Therefore, this String object gets discarded.

1696 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1696 Friday, December 2, 2022 4:23 PM
8.7 (d)
The constant expressions "ab" + "12" and "ab" + 12 will, at compile time, be eval-
uated to the string-valued constant "ab12". Both variables s and t are assigned a
reference to the same interned String object containing "ab12". The variable u is
assigned a new String object, created by using the new operator.

8.8 (b)
The reference value in the reference str1 never changes and it refers to the string
literal "lower" all the time. The calls to toUpperCase() and replace() return a new
String object whose reference value is ignored.

8.9 (d)
The call to the putO() method does not change the String object referred to by the
s1 reference in the main() method. The reference value returned by the call to the
concat() method is ignored.

8.10 (b)
The reference value in the reference str1 never changes and it refers to the string
literal "lower" all the time. The calls to toUpperCase() and replace() return a new
String object whose reference value is ignored.

8.11 (b)
The substring() method returns the characters from the start index inclusive to the
end index exclusive. The start index is returned by the indexOf(' ') method call,
which is the first occurrence of a space character ' ' within the string, namely
index 4. The expression s.indexOf(' ', s.indexOf(' ') + 1) finds the next occur-
rence of the space character ' ', where the search starts after the first occurrence of
the space character (' '), returning the index 7. As 1 is added to this index, the end
index passed to the substring() method is 8. The resulting substring is from index
4 inclusive to index 8 exclusive—that is, " is ". The strip() method removes both
leading and trailing whitespace from this string, resulting in the string "is". To this
string, the character '-' is concatenated at either end.

8.12 (a)
This text block does not have any incidental whitespace because the last line has
no leading whitespace before the closing delimiter of the text block. The while loop
splits the text block into individual lines, extracting a substring from the start to the
line terminator (\n) of each line. The length of each line does not include the line
terminator. The lengths are 3, 5, and 3, as no incidental whitespace is removed. The
length of each line is then printed.

8.13 (d)
In (a) and (b), the content of the text block does not start after the line terminator
of the opening delimiter (""").
In (c), the text block does not end with the closing delimiter ("""), but with four
double quotes. Note that there is no requirement that double quotes should be bal-
anced in a text block, and can be specified with or without escaping.

 8 SELECTED API CLASSES 1697

JSE17_OCP.book Page 1697 Friday, December 2, 2022 4:23 PM
In (d), the text block ends correctly, as it uses the \" escape character for the double
quote that should be part of the text block, allowing it to be distinguished from the
closing delimiter. However, the last line of the block will not end with a line termi-
nator. The resulting string literal is "\"a\"\"b\"". When printed, the output will be
a single line containing the characters "a""b".
(e) is syntactically correct because the text block is correctly terminated. However,
in this case the closing delimiter is on a line on its own, resulting in the last line of
the text block content to end with a line terminator. The resulting string literal is
"\"a\"\"b\"\n". When printed, the output will be a line containing the characters
"a""b" followed by a newline.
(f) is incorrect because the last \" escape character results in the subsequent two
double quotes also to be escaped, resulting in no closing delimiter being found—
that is, \""" results in \"\"\".

8.14 (a) and (e)
The content of a text block starts on a new line of text immediately after the line
that contains the opening delimiter, and ends just before the closing delimiter. This
makes (a) correct, but not (b).
A text block is not a subtype of the String class, as the String class is final, and the
type of a text block is String.
Although trailing whitespace is removed from the end of each line in the text block,
only incidental whitespace is removed from the start of each line in the text block.

8.15 (a)
The code will fail to compile, since the expression (s == sb) is illegal. It compares
references of two classes that are not related. Also, the StringBuffer class does not
override the equals() method from the Object class, but inherits it.

8.16 (e)
The program will compile without errors and will print Have a when run. The con-
tents of the string buffer are truncated to six characters by the method call sb.set-
Length(6).

8.17 (c)
The trimtoSize() only changes the capacity to match the length of the string
builder. It does not the change the length of the string builder. The methods
append(), reverse(), and setLength() change the string builder successively by
appending "!" (" 1234 !"), reversing the string builder ("! 4321 "), and setting
the length to 5 ("! 43"). The print statement prints |! 43|.

8.18 (b)
The references sb1 and sb2 are not aliases. The StringBuilder class does not over-
ride the equals() method so the result will be the same as with the == operator. The
correct answer is (b).

8.19 (a)
The StringBuilder class does not override the hashCode() method, but the String
class does. The references s1 and s2 refer to a String object and a StringBuilder

1698 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1698 Friday, December 2, 2022 4:23 PM
object, respectively. The hash values of these objects are computed by the hash-
Code() method in the String and the Object class, respectively—giving different
results. The references s1 and s3 refer to two different String objects that are equal,
hence they have the same hash value.

8.20 (b)
String builders are mutable. When created, the string builder s1 has the sequence
"W". The call to the append() method in the putO() method appends "O", resulting in
"WO". On return from the put0() method, the call to the append() method in the
main() method appends "W!" to the string builder. The string builder s1 now con-
tains the sequence "WOW!" which is printed.

8.21 (i)
A StringBuilder is manipulated by different methods. First, the string "12" is
appended, then the string "34" is inserted at index 1, resulting in the string "1342"
in the StringBuilder object. Next, the delete() method does not modify the con-
tents because the start and the end indexes are the same. Finally, the replace()
method replaces the characters between the start indices 0 inclusive and the end
index 1 exclusive with an empty string—that is, effectively removing the character
'1' from index 0. The resulting string is "342".

8.22 (b)
Remember that the default capacity of the empty StringBuilder is 16 characters,
which can change as its contents are modified. The string "42" is appended first,
then the second character is deleted from this string, resulting in the StringBuilder
object containing the string "4". The print statement concatenates the string "4" in
the StringBuilder with the sum of its capacity (which still has the default value 16)
and its length (which is 1)—in other words, the string "4" is concatenated with 17.
The resulting string "417" is printed.

8.23 (b) and (d)
The method call Math.ceil(v) returns the double value 11.0, which is printed as
11.0 at (1), but as 11 at (4) after conversion to an int.
The method call Math.round(v) returns the long value 11, which is printed as 11 at
(2).
The method call Math.floor(v) returns the double value 10.0, which is printed as
10.0 at (3), but as 10 at (5) after conversion to an int.
(b) and (d), corresponding to (2) and (4), will print 11.

8.24 (b)
The value –0.5 is rounded up to 0 and the value 0.5 is rounded up to 1.

8.25 (b), (c), and (d)
The expression will evaluate to one of the numbers 0, 1, 2, or 3. Each number has
an equal probability of being returned by the expression.

 9 NESTED TYPE DECLARATIONS 1699

JSE17_OCP.book Page 1699 Friday, December 2, 2022 4:23 PM
9 Nested Type Declarations

9.1 (e)
The code will compile and print 123 at runtime. An instance of the Outer class will
be created and the field secret will be initialized to 123. A call to the createInner()
method will return the reference value of the newly created Inner instance. This
object is an instance of a non-static member class and is associated with the outer
instance. This means that an object of a non-static member class has access to the
members within the outer instance. Since the Inner class is nested in the class con-
taining the field secret, this field is accessible to the Inner instance, even though
the field secret is declared private.

9.2 (b) and (e)
A static member class is in many respects like a top-level class, and can contain
non-static fields. Instances of non-static member classes are created in the context
of an outer instance. The inner instance is associated with the outer instance. Sev-
eral non-static member class instances can be created and associated with the same
outer instance. Static member classes do not have any implicit outer instance. A
static member interface, just like top-level interfaces, cannot contain non-static
fields. Nested interfaces are always static.

9.3 (d)
The program will compile without error, and will print 1, 3, 4, in that order, at run-
time. The expression B.this.val will access the value 1 stored in the field val of the
(outer) B instance associated with the (inner) C object referenced by the reference
obj. The expression C.this.val will access the value 3 stored in the field val of the
C object referenced by the reference obj. The expression super.val will access the
field val from A, the superclass of C.

9.4 (c) and (d)
The class Inner is a non-static member class of the Outer class, and its qualified
name is Outer.Inner. The Inner class does not inherit from the Outer class. The
method named doIt is, therefore, neither overridden nor overloaded. Within the
scope of the Inner class, the doIt() method of the Outer class is hidden by the doIt()
method of the Inner class.

9.5 (e)
Non-static member classes, unlike top-level classes, can have any access modifier.
Static member classes can be declared in a top-level class and any nested class.
Methods in all nested classes can be declared static. Only static member classes
can be declared static. Declaring a class static only means that instances of the
class are created without having an outer instance. This has no bearing on whether
the members of the class can be static or not.

9.6 (c), (d), and (e)
The method at (1) will not compile, since the parameter i is neither final nor effec-
tively final, and therefore not accessible from within the inner class. The syntax of

1700 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1700 Friday, December 2, 2022 4:23 PM
the anonymous class in the method at (2) is not correct, as the empty argument list
is missing. The parameter i at (3) is effectively final, and at (4) it is final. The
method at (5) is legally declared.

9.7 (d)
Other static members, not only static final fields declared as constant variables,
can be declared within a non-static member class. Members in outer instances are
directly accessible using simple names (provided they are not hidden). Fields in
nested static member classes need not be final. Anonymous classes cannot have
constructors, since they have no names. Nested classes define types that are dis-
tinct from the enclosing class, and the instanceof type comparison operator does
not take the type of the outer instance into consideration.

9.8 (d)
Note that the nested classes are locally declared in a static context.
(a) and (b) refer to the field str1 in Inner. (c) refers to the field str1 in Access. (e)
requires the Helper class to be in the Inner class in order to compile, but this will
not print the right answer. (f), (g), and (h) will not compile, as the Helper local class
cannot be accessed using the enclosing class name.

9.9 (c)
The field t denotes an instance of the anonymous inner class that extends the Test
class. The toString() method is implicitly called on t in the print statement. The
anonymous inner class overrides the toString() method, which is invoked. It
returns the result of the following return statement:

return this.x + super.toString() + x;

Here, both this.x and x refer to the field x declared in the anonymous class, which
has the character value '>'. This field shadows the local variable x in the main()
method, which in turn shadows the field x in the Test class.
The call super.toString() results in the toString() method in the superclass Test to
be invoked. It returns the result of the following statement:

return x + "42";

Here, the x refers to the field x in the Test class, which has the character value '='.
The statement returns the string "=42”.
The print statement concatenates the following expression to print ">=42>"—that
is, (c):

'>' + "=42" + '>'

9.10 (d)
The String class is final, and therefore, cannot be extended. An anonymous inner
class tries to extend the String class, but it will be flagged as an error by the com-
piler.

 10 OBJECT LIFETIME 1701

JSE17_OCP.book Page 1701 Friday, December 2, 2022 4:23 PM
10 Object Lifetime

10.1 (d)
An object is only eligible for garbage collection if all remaining references to the
object are from other objects that are also eligible for garbage collection. Therefore,
if object obj2 is eligible for garbage collection and object obj1 contains a reference
to it, then object obj1 must also be eligible for garbage collection. Java does not
have a keyword delete. An object will not necessarily be garbage collected imme-
diately after it becomes unreachable. However, the object will be eligible for gar-
bage collection. Circular references do not prevent objects from being garbage
collected, only reachable references do. An object is not eligible for garbage collec-
tion as long as the object can be accessed by any live thread.

10.2 (b)
Before (1), the String object initially referenced by arg1 is denoted by both msg and
arg1. After (1), the String object is only denoted by msg. At (2), the reference msg is
assigned a new reference value. This reference value denotes a new String object
created by concatenating the contents of several other String objects. After (2),
there are no references to the String object initially referenced by arg1. The String
object is now eligible for garbage collection.

10.3 (a)
The only object created is the array, and it is reachable when control reaches (1).

10.4 (a)
All the objects created in the loop are reachable via p, when control reaches (1).

10.5 (a)
It may seem that since the method removeAll() sets the songs array reference to
null, there would be three objects (i.e., the array itself and its two Song objects) eli-
gible for garbage collection when control reaches (1). However, prior to this
method invocation, this array reference is also assigned to a local array variable
songs declared in the main() method. As a result, even though the songs array field
in the Album object no longer references the Song array, the local array variable songs
still references this array object, which is thus reachable.

10.6 (c), (e), and (f)
The static initializer blocks (a) and (b) are not legal, since the fields alive and STEP
are non-static and final, respectively. (d) is not a syntactically legal static initial-
izer block. The static block in (e) will have no effect, as its body is an empty block.
The static block in (f) will change the value of the static field count from 5 to 1.

10.7 (c)
The program will compile and print 50, 70, 0, 20, 0 at runtime. All fields are
given default values unless they are explicitly initialized. Field i is assigned the
value 50 in the static initializer block that is executed when the class is initialized.
This assignment will override the explicit initialization of field i in its declaration
statement. When the main() method is executed, the static field i is 50 and the

1702 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1702 Friday, December 2, 2022 4:23 PM
static field n is 0. When an instance of the class is created using the new operator,
the value of the static field n (i.e., 0) is passed to the constructor. Before the body
of the constructor is executed, the instance initializer block is executed, which
assigns the values 70 and 20 to the fields j and n, respectively. When the body of
the constructor is executed, the fields i, j, k, and n, and the parameter m, have the
values 50, 70, 0, 20, and 0, respectively.

10.8 (f)
This class has a blank final boolean instance variable active. This variable must be
initialized when an instance is constructed, or else the code will not compile. This
also applies to blank final static variables. The keyword static is used to signify
that a block is a static initializer block. No keyword is used to signify that a block
is an instance initializer block. (a) and (b) are not instance initializer blocks, and (c),
(d), and (e) fail to initialize the blank final variable active.

10.9 (c)
The program will compile and print 2, 3, and 1 at runtime. When the object is cre-
ated and initialized, the instance initializer block is executed first as it is declared
first, printing 2. Then the instance initializer expression is executed, printing 3.
Finally, the constructor body is executed, printing 1. The forward reference in the
instance initializer block is legal, as the use of the field m is on the left-hand side of
the assignment.

10.10 (c)
This question tests understanding of execution order of initializers and construc-
tors when an object is created. First the static initializers are executed, when classes
Music and Song are loaded into memory. Therefore, the string "-C--F-" is printed
first. The static initializers are invoked only once, so neither "-C-" nor "-F-" is
printed again. This excludes (a) and (b).
When the first new Song() object is created, it first triggers initialization starting
from its superclass instance initializer and constructor, which prints "-D--E-", after
which the instance initializer and constructor in the Song class are executed, print-
ing "-G--A-". This process is repeated for the second new song, resulting in "-D--
E--G--A-" being printed. The final printout is "-C--F--D--E--G--A--D--E--G--A-".

10.11 (c) and (e)
Line (1) will cause illegal redefinition of the field width. Line (2) uses an illegal for-
ward reference to the fields width and height. The assignment in line (3) is legal.
Line (4) is an assignment statement, and therefore illegal in this context. Line (5)
declares a local variable inside an initializer block with the same name as the
instance variable width, which is allowed. The simple name in this block will refer
to the local variable. To access the instance variable width, the this reference must
be used in this block.

 11 GENERICS 1703

JSE17_OCP.book Page 1703 Friday, December 2, 2022 4:23 PM
11 Generics

11.1 (b)
The type of intList is List of Integer and the type of numList is List of Number. The
compiler issues an error because List<Integer> is not a subtype of List<Number>.

11.2 (c)
With a reference of type List<? super Integer>, a set/put/write/add operation can
only add an Integer or a subtype of Integer to the list. Calls to the add() method in
the code are not a problem, as an Integer is added to the list.
With a reference of type List<? super Integer>, a get/read operation can only get
an Object from the list. This object is not assignable to a reference of type Number. (3)
will not compile.

11.3 (b)
The compiler issues an unchecked conversion warning at (1), as we are assigning
a raw list to a generic list.

11.4 (b), (f), and (g)
We cannot create an array of a type parameter, as at (2). We cannot refer to the type
parameters of a generic class in a static context—for example, in static initializer
blocks, static field declarations, and as types of local variables in static methods, as
at (6) and (7).

11.5 (b), (c), (e), and (f)
In (b), (c), (e), and (f), the parameterized type in the object creation expression is a
subtype of the type of the reference. This is not the case in (a): Just because Hash-
Map<Integer, String> is a subtype of Map<Integer, String>, it does not follow that
HashMap<Integer, HashMap<Integer, String>> is a subtype of Map<Integer, Map<Inte-
ger, String>>—there is no subtype covariance relationship between concrete
parameterized types. In (d) and (g), wild cards cannot be used to instantiate the
class.

11.6 (b)
ArrayList<Fruit> is not a subtype of List<? extends Apple> at (1), and Array-
List<Apple> is not a subtype of List<? super Fruit> at (4). Any generic list can be
assigned to a raw list reference. A raw list and an unbounded wildcard list are
assignment compatible.

11.7 (d)
The compiler issues unchecked warnings for calls to the add() method. The TreeSet
class orders elements according to their natural ordering. A ClassCastException is
thrown at runtime when the statement set.add(2) is executed, as an Integer is not
comparable to a String.

11.8 (a) and (b)
The type of reference g is of raw type Garage. We can put any object in such a Garage,
but only get Objects out. The type of value returned by the get() method at (6)

1704 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1704 Friday, December 2, 2022 4:23 PM
through (8) is Object, and therefore, is not assignment compatible with Vehicle,
Car, or Sedan.

11.9 (d), (e), and (f)
In (a), the arguments in the call are (List<Number>, List<Integer>). No type
inferred from the arguments satisfies the formal parameters (List<? extends T>,
List<? super T>).
In (b), the arguments in the call are (List<Number>, List<Integer>). The actual type
parameter is Number. The arguments do not satisfy the formal parameters (List<?
extends Number>, List<? super Number>). List<Number> is a subtype of List<? extends
Number>, but List<Integer> is not a subtype of List<? super Number>.
In (c), the arguments in the call are (List<Number>, List<Integer>). The actual type
parameter is Integer. The arguments do not satisfy the formal parameters (List<?
extends Integer>, List<? super Integer>). List<Number> is not a subtype of List<?
extends Integer>, although List<Integer> is a subtype of List<? super Integer>.
In (d), the arguments in the call are (List<Integer>, List<Number>). The inferred
type is Integer. The arguments satisfy the formal parameters (List<? extends Inte-
ger>, List<? super Integer>).
In (e), the arguments in the call are (List<Integer>, List<Number>). The actual type
parameter is Number. The arguments satisfy the formal parameters (List<? extends
Number>, List<? super Number>).
In (f), the arguments in the call are (List<Integer>, List<Number>). The actual type
parameter is Integer. The arguments satisfy the formal parameters (List<? extends
Integer>, List<? super Integer>).

11.10 (f)
(a) invokes the zero-argument constructor at (1).
(b) invokes the constructor at (2) with T as String and V as String.
(c) invokes the constructor at (2) with T as String and V as Integer.
(d) invokes the constructor at (3) with T as Integer and V as String.
(e) invokes the constructor at (3) with T as String and V as Integer.
(f) cannot infer type arguments for Box<>. From the constructor call signature
(String, Integer) one would assume that T was String and V was Integer. The
parameterized type Box<Integer> of the reference on the left-hand side implies T is
Integer, which contradicts that T is String on the right-hand side.

11.11 (b)
It is the fully qualified name of the class after erasure that is printed at runtime.
Note that it is the type of the object, not the reference, that is printed. The erasure
of all the lists in the program is ArrayList.

11.12 (e)
(a) contains incompatible types for assignment in the main() method. The method
will return a Collection whose element type is some unknown subtype of CharSe-
quence (Collection<? extends CharSequence>). As it is not known which subtype,
assignment to Collection<String> cannot be allowed.

 11 GENERICS 1705

JSE17_OCP.book Page 1705 Friday, December 2, 2022 4:23 PM
(b) contains an incompatible return value in the delete4LetterWords() method. The
declared return type is List<E> but the return statement returns a Collection<E>. It
cannot convert from Collection<E> to List<E>.
In (c), the reference words denotes a Collection whose element type is some
unknown subtype of CharSequence (Collection<? extends CharSequence>). In the
for(:) loop, the loop variable word is of type E. The unknown element type of words
cannot be converted to E.
(d) contains an incompatible return value in the delete4LetterWords() method: It
cannot convert from Collection<E> to List<E>, as explained in (b). In the for(:)
loop, the unknown element type of words cannot be converted to an element of type
E, as explained in (c).
(e) is OK.
In (f), the keyword super cannot be used in a constraint. It can only be used with a
wildcard (?).

11.13 (b) and (f)
After erasure, the method at (1) has the signature overloadMe(List, List). Since all
methods are declared void, they must differ in their parameter list after erasure in
order to be overloaded with the method at (1). All methods have different param-
eter lists from that of the method at (1), except for the declarations (b) and (f). In
other words, all methods have signatures that are not override equivalent to the
signature of the method at (1), except for (b) and (f).

11.14 (b)
Passing or assigning a raw list to either a list of Integers or to a list of type param-
eter T is not type-safe. Passing or assigning a raw List to a List<?> is always per-
missible.

11.15 (c), (f), (i), and (k)
The type parameter N in SubC1 does not parameterize the supertype SupC. The era-
sure of the signature at (3) is the same as the erasure of the signature at (1) (i.e., it
is a name clash). Therefore, of the three alternatives (a), (b), and (c), only (c) is cor-
rect.
The type parameter N in SubC1 cannot be guaranteed to be a subtype of the type
parameter T in SupC—that is, incompatible return types for the get() methods at (4)
and (2), which are not overridden. Also, methods cannot be overloaded if only
return types are different. Therefore, of the three alternatives (d), (e), and (f), only
(f) is correct.
The type parameter N in SubC2 is a subtype of the type parameter M, which param-
eterizes the supertype SupC. The erasure of the signature at (5) is still the same as
the erasure of the signature at (1) (i.e., it is a name clash). Therefore, of the three
alternatives (g), (h), and (i), only (i) is correct.
The type parameter N in SubC1 is a subtype of the type parameter T (through M) in
SupC—that is, covariant return types for the get() methods at (6) and (2), which are
overridden. Therefore, of the three alternatives (j), (k), and (l), only (k) is correct.

1706 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1706 Friday, December 2, 2022 4:23 PM
11.16 (a), (c), and (e)
In (a), because of the way an enum type E is implemented as a subtype of the
java.lang.Enum<E> class in Java, we cannot define a generic enum type.
In (c), generic exceptions or error types are not allowed because the exception han-
dling mechanism is a runtime mechanism and the JVM is oblivious to generics.
In (e), anonymous classes do not have a name, but a class name is needed for
declaring a generic class and specifying its formal type parameters. A parameterized
anonymous class can always to declared.

11.17 (d)
Casts are permitted, as at (2) through (6), but can result in an unchecked warning.
The assignment at (5) is from a raw type (List) to a parameterized type (List<Inte-
ger>), resulting in an unchecked assignment conversion warning. Note that at (5)
the cast does not pose any problem. It is the assignment from generic code to leg-
acy code that can be a potential problem, and flagged as an unchecked warning.
At (6), the cast is against the erasure of List<Integer>—that is, List. The compiler
cannot guarantee that obj is a List<Integer> at runtime, and therefore flags the cast
with an unchecked warning.
Only reifiable types in casts do not result in an unchecked cast warning.

11.18 (e)
Instance tests in the scuddle() method use the reified type List<?>. All assign-
ments in the main() method are type-safe.

11.19 (c)
The erasure of E[] in the method copy() is Object[]. The array type Object[] is actu-
ally cast to Object[] at runtime—that is, an identity cast. The method copy()
returns an array of Object. In the main() method, the assignment of this array to an
array of Strings results in a ClassCastException.

11.20 (e)
The method header at (1) is valid. The type of the variable arity parameter can be
generic. The type of the formal parameter aols is an array of Lists of T. However,
the compiler issues a potential heap pollution warning because of variable arity
parameter aols.
The main() method at (2) can be declared as String..., as it is equivalent to
String[], but no potential heap pollution warning is issued, as it is a reifiable type.
The statement at (3) creates an array of Lists of Strings. However, the compiler
issues an unchecked conversion warning, since a raw type (List[]) is being
assigned to a parameterized type (List<String>[]).
The formal type parameter T is inferred to be String in the method call at (4).
The method doIt() prints each list in its variable arity parameter aols.

 12 COLLECTIONS, PART I: ARRAYLIST<E> 1707

JSE17_OCP.book Page 1707 Friday, December 2, 2022 4:23 PM
12 Collections, Part I: ArrayList<E>

12.1 (e)
The for(;;) loop correctly increments the loop variable so that all the elements in
the list are traversed. Removing elements using the for(;;) loop does not throw a
ConcurrentModificationException at runtime.

12.2 (b) and (c)
In the method doIt1(), one of the common elements ("Ada") between the two lists
is reversed. The value null is added to one of the lists but not the other.
In the method doIt2(), the two lists have common elements. Swapping the ele-
ments in one does not change their position in the other.

12.3 (c)
The element at index 2 has the value null. Calling the equals() method on this ele-
ment throws a NullPointerException.

12.4 (f)
Deleting elements when iterating over a list requires care, as the size changes and
any elements to the right of the deleted element are shifted left. Incrementing the
loop variable after deleting an element will miss the next element (i.e., the last
occurrence of "Bob"). Removing elements using the for(;;) loop does not throw a
ConcurrentModificationException at runtime.

12.5 (f)
The while loop will execute as long as the remove() method returns true—that is,
as long as there is an element with the value "Bob" in the list. The while loop body
is the empty statement. The remove() method does not throw an exception if an ele-
ment value is null, or if it is passed a null value.

12.6 (b)
An ArrayList object is populated with the content from the String array. Just like
with an array, an array list has a 0-based index. The item at index 1 in this array list
is replaced with the string "X", making this array list content [A,X,B,A]. Then a new
item is added at the same index position, causing all other items in the list to be
shifted by one position, making this array list content [A,X,X,B,A]. Lastly, an item
at index 2 is removed, giving the result [A,X,B,A].

12.7 (a)
The method Arrays.asList() creates a fixed-size list, which does not allow items to
be added or removed, but its content can be changed, which is what the set() oper-
ations do, replacing items at index 1 and 2 with "X".

12.8 (c)
The two arrays and the list in the main() method contain references to the same
Song objects. These are not independent copies, so modifications on a shared Song
object will be visible no matter how this object is accessed.

1708 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1708 Friday, December 2, 2022 4:23 PM
12.9 (b)
A list that is created using the List.of() method shares the elements with the orig-
inal array. However, changes applied to the original array are not reflected in the
list.

12.10 (a)
The method toArray() returns an array with all the elements in the list. The type of
the array is given by the array passed as a parameter. If the length of the argument
array is equal to the size of the list, the argument array is used. The argument array
is also used if its length is greater than the size of the list, but after copying the ele-
ments to the array, the remaining elements in the array are filled with null values.
Otherwise, a new array of appropriate size is created. In the sample code, the
length of the array is equal to the size of the list. Therefore, the argument array is
used. Afterwards, the lowercase version of the element at index 0 in the original
list is assigned to the element at index 1 in the array.

12.11 (b)
An empty ArrayList object is created to store Character objects, using a constructor
with a capacity of 3. Five char values from 'a' to 'e' are boxed as Character objects
and added to this list. Remember that a list auto-expands its capacity as required.

13 Functional-Style Programming

13.1 (e)
A functional interface can be implemented by lambda expressions and classes. A
functional interface declaration can only have one abstract method declaration. In
the body of a lambda expression, all members in the enclosing class can be
accessed. In the body of a lambda expression, only final or effectively final local
variables in the enclosing scope can be accessed.

13.2 (e), (f), (g), and (i)
The assignments at (5), (6), (7), and (9) will not compile. We must check whether
the function type of the target type and the type of the lambda expression are com-
patible. The function type of the target type p1 in the assignment statements from
(1) to (5) is String -> void (i.e., a void return). The function type of the target type
p2 in the assignment statements from (6) to (10) is String -> String (i.e., a non-void
return). Below, the functional type of the target type is shown in a comment with
the prefix LHS (left-hand side), and the type of the lambda expression for each
assignment from (1) to (10) is shown in a comment with the prefix RHS (right-hand
side).

 Funky1 p1; // LHS: String -> void
 p1 = s -> System.out.println(s); // (1) RHS: String -> void
 p1 = s -> s.length(); // (2) RHS: String -> int
 p1 = s -> s.toUpperCase(); // (3) RHS: String -> String
 p1 = s -> { s.toUpperCase(); }; // (4) RHS: String -> void
// p1 = s -> { return s.toUpperCase(); }; // (5) RHS: String -> String

 13 FUNCTIONAL-STYLE PROGRAMMING 1709

JSE17_OCP.book Page 1709 Friday, December 2, 2022 4:23 PM
 Funky2 p2; // LHS: String -> String
// p2 = s -> System.out.println(s); // (6) RHS: String -> void
// p2 = s -> s.length(); // (7) RHS: String -> int
 p2 = s -> s.toUpperCase(); // (8) RHS: String -> String
// p2 = s -> { s.toUpperCase(); }; // (9) RHS: String -> void
 p2 = s -> { return s.toUpperCase(); }; // (10)RHS: String -> String

Remember that the non-void return of a lambda expression with an expression state-
ment as the body can be interpreted as a void return, if the function type of the tar-
get type returns void. This is the case at (2) and (3). The return value is ignored. The
type String -> String of the lambda expression at (5) is not compatible with the
function type String -> void of the target type p1.
The type of the lambda expression at (6), (7), and (9) is not compatible with the
function type String -> String of the target type p2.

13.3 (d)
The three interfaces are functional interfaces. AgreementB explicitly provides an
abstract method declaration of the public method equals() from the Object class,
but such declarations are excluded from the definition of a functional interface.
Thus AgreementB effectively has only one abstract method. A functional interface
can be implemented by a concrete class, such as Beta. The function type of the tar-
get type in the assignments (1) to (3) is void -> void. The type of the lambda expres-
sion at (1) to (3) is also void -> void. The assignments (1) to (3) are legal.
The assignment at (4) is legal. Subtype references are assigned to supertype refer-
ences. References o, a, and c refer to the lambda expression at (3).
The assignment at (5) is legal. The reference b has the type AgreementB and class Beta
implements this interface.
The code at (6), (7), and (8) invokes the method doIt(). The code at (6) evaluates
the lambda expression at (3), printing Jingle|. The code at (7) invokes the doIt()
method on an object of class Beta, printing Jazz|. The code at (8) also evaluates the
lambda expression at (3), printing Jingle|.
At (9), the reference o is cast down to AgreementA. The reference o actually refers to
the lambda expression at (3), which has target type AgreementC. This interface is a
subtype of AgreementA. A subtype is cast to a supertype, which is allowed, so no
ClassCastException is thrown at runtime. Invoking the doIt() method again results
in evaluation of the lambda expression at (3), printing Jingle|.
Apart from the declarations of the lambda expressions, the rest of the code is plain-
vanilla Java. Note also that the following assignment that defines a lambda expres-
sion would not be valid, since the Object class is not a functional interface and
therefore cannot provide a target type for the lambda expression:

Object obj = () -> System.out.println("Jingle"); // Compile-time error!

13.4 (c)
The method removeIf() accepts as an argument a lambda expression that imple-
ments a Predicate<E> interface. This method removes all strings of length 3 from
the list. The for (:) loop calculates the sum of the lengths of the remaining strings
in the list, producing a result of 9.

1710 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1710 Friday, December 2, 2022 4:23 PM
13.5 (c)
The method removeIf() accepts a lambda expression that first converts a string to
lowercase and then tests whether the resulting string starts with the character 'a'.
Note that the predicate only performs the test, and it does not actually modify the
strings in the list. Only the strings "ANNA" and "ALICE" pass the test and are
removed.

13.6 (i)
The lambda expression uses identifier s as a parameter name, which is illegal
because a variable called s is already defined in the enclosing context of the lambda
expression.

13.7 (c)
There are two predicates defined in this code. The first predicate determines
whether a string contains the letter O, and the second one determines whether a
string ends with the letter P. The composed predicate
filter1.and(filter2).negate() determines whether a string does not contain an O
or it does not end with a P. Only the strings "PLOT" and "LEAP" pass this test and are
removed from the list by the removeIf() method, leaving only the strings "FLOP"
and "LOOP" in the list.

13.8 (d)
The compose() method is inherited by the UnaryOperator<T> from its superinterface
Function<T, T>. This method returns a Function<T, T>. As an instance of a super-
type (Function<T, T>) cannot be assigned to a subtype (UnaryOperator<T>), the
assignment to f3 results in a compile-time error.

13.9 (b)
All String values in the list are replaced with their lowercase equivalents using the
replaceAll() method which accepts a lambda expression that implements a Unary-
Operator<String>. The two consumers are applied to the values in this List. Con-
sumer c1 is changing the first letter of every string in the list to uppercase, but it
does not replace actual String objects stored within this list. Next, consumer c2
prints the content of this list, which has been produced by the replaceAll()
method.

13.10 (b)
Regarding method references, the method isEven() is static and therefore should
be referred to using the class name Test, while the method printValue() is an
instance method, and therefore should be referred to using a reference of the class
Test.

13.11 (a)
The target reference for the bounded instance method reference is set explicitly.
The unbounded instance method reference interprets the first argument as the tar-
get reference.

 14 OBJECT COMPARISON 1711

JSE17_OCP.book Page 1711 Friday, December 2, 2022 4:23 PM
13.12 (d)
Notice that the BiFunction in this example is using raw type. Therefore, the x and y
parameters are of the Object type. This means that a division operator cannot be
applied in this case.

13.13 (a)
Functions f1 and f2 are combined to concatenate the prefix and the postfix around
the value supplied to the apply() method argument. Notice that conversion to
String works for any object in Java. Therefore, Function objects can use raw types.

14 Object Comparison

14.1 (b) and (d)
It is recommended that (a) is fulfilled, but it is not a requirement. (c) is also not
required, but such objects will lead to collisions in the hash table, as they will map
to the same bucket.

14.2 (a), (b), (d), and (h)
(c) is eliminated, since the hashCode() method cannot claim inequality if the
equals() method claims equality. (e) and (f) are eliminated, since the equals()
method must be reflexive, and (g) is eliminated, since the hashCode() method must
consistently return the same hash code during execution.

14.3 (b), (d), and (e)
(a) and (c) fail to satisfy the properties of an equivalence relation. (a) is not transi-
tive, and (c) is not symmetric.

14.4 (a) and (e)
(b) is not correct, since it will throw an ArithmeticException when called on a newly
created Measurement object. (c) and (d) are not correct, since they may return
unequal hash codes for two objects that are equal according to the equals()
method.

14.5 (c)
The generic static method cmp() returns a comparator (implemented as a lambda
expression) that reverses the natural ordering of a Comparable type. The natural
ordering of the class Person is ordering by name first and then by age, using the
reverse comparators strCmp and intCmp. p1 is less than p2 because of name, and p1 is
greater than p3, because of age, as their names are equal.

14.6 (d)
All methods implement reverse natural ordering, except the method at (4). The
method reference Comparable::compareTo is equivalent to the lambda expression
(e1, e2) -> e1.compareTo(e2)—that is, natural ordering.

14.7 (b)
A lambda expression that implements the Comparator<String, String> is used to
sort the array in ascending order based on the text representation of Integer

1712 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1712 Friday, December 2, 2022 4:23 PM
objects. Basically, each array element is converted to a String before it is compared.
The ordering is that of String objects, where "-23" is less than "-41" lexicographi-
cally.

14.8 (a)
The lambda expression that implements the Comparator<Album> interface defines a
total ordering of Albums based on the difference between the lengths of the album
titles, resulting in the list being sorted in ascending order by title length. The
resulting list is then printed using the lambda expression that implements the Con-
sumer<Album> interface.

14.9 (b)
The equals() method of the Album1 class checks whether the object is not null and
of the same type as the current object before comparing album titles. This is a strict
check that verifies whether the object with which the current object is compared is
of exactly the same type, using the following condition: (getClass() != obj.get-
Class()). Alternatively, a less strict check that allows type substitution is also pos-
sible: (obj instanceof Album1). The difference between these two approaches is
that the instanceof operator can return true when comparing this object to another
object that is an instance of the subtype. Of course, this would not be the case if spe-
cific class types are compared.
Note that the logic in the main() method compares an Album1 to an LP, which is actu-
ally a subclass of Album1. This means that even though both of these objects have
the same title, they would not be considered equal because the logic of the equals()
method implements a strict type comparison.

14.10 (b) and (d)
The Comparator<A> interface defines the compare() method that is designed to com-
pare two argument objects of class A to establish their ordering. Each Comparator<A>
implementation can define a different total ordering for the objects.

15 Collections: Part II

15.1 (a)
The expression in the for(:) loop header (in this case the call to the makeCollec-
tion() method) is only evaluated once.

15.2 (c) and (d)
The for(:) loop does not allow the list to be modified structurally. In (a) and (b),
the code will throw a java.util.ConcurrentModificationException. Note that the
iterator in (d) is less restrictive than the for(:) loop, allowing elements to be
removed in a controlled way.

15.3 (d)
The iterator implemented will iterate over the elements of the list in the reverse
order, and so will the for(:) loop. The Iterable<E> and the Iterator<E> interfaces
are implemented correctly. Note that the anonymous class that implements the

 15 COLLECTIONS: PART II 1713

JSE17_OCP.book Page 1713 Friday, December 2, 2022 4:23 PM
iterator is parameterized by the formal type parameter T of the generic class
AnotherListIterator<T>.

15.4 (b) and (d)
Some operations on a collection may throw an UnsupportedOperationException.
This exception type is unchecked, and the user code is not required to explicitly
handle unchecked exceptions. A List<E> allows duplicate elements. An Array-
List<E> is implemented using a resizable array. The capacity of the array will be
expanded automatically when needed. The Set<E> allows at most one null ele-
ment.

15.5 (d)
The program will compile without error, and will print all primes below 25 at run-
time. All collection implementations used in the program implement the Collec-
tion<E> interface. The implementation instances are interchangeable when
denoted by Collection references. None of the operations performed on the imple-
mentations will throw an UnsupportedOperationException. The program finds the
primes below 25 by removing all values divisible by 2, 3, and 5 from the set of val-
ues from 2 through 25.

15.6 (b)
The remove() method removes the last element returned by either the next() or
previous() method. The four next() calls return A, B, C, and D. D is subsequently
removed. The two previous() calls return C and B. B is subsequently removed.

15.7 (c), (d), (e), and (f)
Sets cannot have duplicates. HashSet<E> does not guarantee the order of the ele-
ments in (a) and (b), so there is no guarantee that the program will print [1, 9].
Because LinkedHashSet<E> maintains elements in insertion order in (c) and (d), the
program is guaranteed to print [1, 9]. Because TreeSet<E> maintains elements
sorted according to the natural ordering in (e) and (f), the program is guaranteed
to print [1, 9].

15.8 (c) and (d)
The output from each statement is shown below.
(a) [sea, shell, soap]
(b) [sea, shell]
(c) [soap, swan]
(d) [swan]
(e) [shell, soap]
(f) [sea, shell]

15.9 (b) and (d)
Although all keys in a map must be unique, duplicate values can occur. Since values
are not unique, the values() method returns a Collection<V> and not a Set<V>. The
collections returned by the keySet(), entrySet(), and values() methods are backed
by the underlying map. This means that changes made in one are reflected in the

1714 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1714 Friday, December 2, 2022 4:23 PM
other. Although implementations of the SortedMap<K, V> interface maintain the
entries sorted according to key-sort order, this is not a requirement for classes that
implement the Map<K, V> interface. For instance, the entries in a HashMap<K, V> are
not sorted.

15.10 (a), (c), and (d)
The key of a Map.Entry<K, V> cannot be changed, since the key is used for locating
the entry within the map. There is no set() method. The setValue() method is
optional.

15.11 (b)
A set is a collection of unique elements, so an attempt to insert the same element
twice is ignored, with no exception raised. The ordering of elements in the set is
determined by the Comparator<E> passed to the TreeSet constructor. The compara-
tor passed compares the element strings in the reverse natural ordering.

15.12 (b)
The set1 object sorts elements according to the reverse natural ordering. The set2
object retains that ordering. In the statement

NavigableSet<String> set2 = new TreeSet<>(set1);

the signature of the constructor called is the following:
TreeSet<String>(SortedSet<String> set)

resulting in the same ordering for the elements in set2 as in set1 (i.e., reverse nat-
ural ordering). Note that class NavigableSet<E> is a subclass of class SortedSet<E>
class.

15.13 (a)
The set1 object sorts the elements according to reverse natural ordering.
In the statement

NavigableSet<String> set2 = new TreeSet<>((Collection<String>)set1);

the signature of the constructor called is
TreeSet<String>(Collection<? extends String> collection)

resulting in the elements in set2 being sorted according to natural ordering, and not
according to the reverse natural ordering of set1.

15.14 (a)
The set1 object sorts its elements in reverse natural ordering. It is polled from the
tail, so its elements are fetched according to natural ordering. On the other hand,
the elements in set2 are sorted according to natural ordering. set2 is polled from
the head, so its elements are fetched according to natural ordering.

15.15 (b)
A map view method creates half-open intervals (i.e., the upper bound is not
included), unless the inclusion of the bounds is explicitly specified. Clearing a map
view clears the affected entries from the underlying map. The argument to the sum-
Values() method can be any subtype of Map<K, V>, where the type of the value is
Integer.

 15 COLLECTIONS: PART II 1715

JSE17_OCP.book Page 1715 Friday, December 2, 2022 4:23 PM
15.16 (b), (e), and (f)
(a) throws a ConcurrentModificationException. We cannot remove an entry in a
for(:) loop. (c) throws a ConcurrentModificationException as well, even though we
use an iterator. The remove() method is called on the map, not on the iterator. The
argument to the remove() method of the map must implement Comparable.
Map.Entry<K, V> does not, resulting in a ClassCastException in (d).
We can remove an entry from the underlying map when iterating over the key set
using an iterator, as in (b). (e) creates a map view of one entry and clears it, thereby
clearing it also from the underlying map. (f) removes the entry for "Shampoo" from
the map, since the lambda expression returns the value null.

15.17 (e)
The variable sumVal is not effectively final when referenced in the lambda expres-
sion body, as it is incremented for each entry in the map.

15.18 (c)
The computeIfAbsent() method returns an empty TreeSet if the key is not found in
the map. If the key is found, it returns the associated TreeSet. The add() method is
invoked on the TreeSet that is returned by the computeIfAbsent() method. The
add() method adds its argument to this TreeSet. The resulting map is a multimap—
that is, a key can be associated with a collection of values.

15.19 (b)
The BiFunction<Integer, String, String> implemented by the lambda expression
computes a new value for the key of an entry in the map. The switch statement
determines the new value based on the key. The lambda expression returns the
value "FIRST" for key 1, the value "SECOND" for key 2, and so on. The replaceAll()
method replaces the value of each entry in the map with the new value computed
for the key by the BiFunction<T, U, R>.

15.20 (b)
The class StringBuilder implements the Comparable<E> interface. The sort()
method sorts the elements in reverse natural ordering: [C, B, A]. The method sub-
list() returns the elements in the open interval [1, 2)—that is, the element at
index 1, which is "B".

15.21 (b), (c), (f), and (g)
The Collections.addAll() method adds the elements to an existing list when it is
called. All three elements are in list1 when (1) is executed. The Arrays.asList()
method returns a new list every time it is called. Only the string "Howdy" is in list2
when (2) is executed. The Collection.addAll() method adds the elements of its
argument collection to the collection on which it is called. In this case, list3 has the
same elements as list1. Calling the constructor with a collection as an argument
initializes the new list with the elements of the specified collection. In this case,
list4 has the same elements as list2.
Creating a new list by calling the constructor with a collection as an argument
returns an ArrayList initialized with the elements of the collection.

1716 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1716 Friday, December 2, 2022 4:23 PM
15.22 (a) and (f)
The largest value a match can return is the largest index—that is, array.length – 1
(==3). The key must be equal to the largest element in the array. If no match is
found, a negative value is returned, which is computed as follows: – (insertion point
+ 1). The smallest value is returned for a key that is greater than the largest element
in the array. This key must obviously be placed at the index array.length (==4), after
the largest element—that is, the insertion point is 4. The value of the expression –
(insertion point + 1) is -5, which is the smallest value printed by the method.

15.23 (c)
The operation pollFirst() does not throw an exception, but rather returns null
when the Deque object is empty. The operations peekFirst() and peekLast() return
the first and last elements from the Deque object, respectively, but do not remove
elements from the Deque. The operations pollFirst() and pollLast() return the first
and last elements from the Deque object, respectively, and remove them from the
Deque. The operation offerFirst() inserts elements at the head of the Deque. The
operation offerLast() inserts elements at the tail of the Deque.

15.24 (b)
A set cannot have duplicates. This means that object x was only added once to the
set. The add() method does not throw an exception, but rather returns false when
an element cannot be added to the set.

15.25 (d)
The first two add operations result in the list [1, 2]. Next, a null value is inserted
at index 2, and the value 3 is inserted at index 3, which results in the list [1, 2,
null, 3]. Next, the value 4 is inserted at index 2, shifting elements towards the end
of the list, resulting in the list [1, 2, 4, null, 3]. The element at index 2 is replaced
with the value 3, giving the list [1, 2, 3, null, 3], and then the element at index
2 is removed, giving the list [1, 2, null, 3]. Finally, the value 2 is inserted at index
2, which results in the list [1, 2, 2, null, 3].

16 Streams

16.1 (b)
The mapToInt() operation converts a Stream<String> to an IntStream whose ele-
ments are the length of the strings in its input stream. The int stream will contain
the values 1, 3, 2, and 4, corresponding to the length of the strings. The filter()
operation discards strings of length 4. Its output stream will only contain the val-
ues 1, 3, and 2. The reduce() method performs a functional reduction, starting with
the initial value of 1. Its accumulator multiplies the cumulative result with the cur-
rent value in the int stream, with the computation proceeding as follows:

(x, y) -> x * y
(1, 1) -> 1 * 1 => 1
(1, 3) -> 1 * 3 => 3
(3, 2) -> 3 * 2 => 6

 16 STREAMS 1717

JSE17_OCP.book Page 1717 Friday, December 2, 2022 4:23 PM
16.2 (d)
The filter() intermediate operation is designed to return a stream whose ele-
ments match the given Predicate. The findFirst() terminal operation does not nec-
essarily return the first element from the stream when this stream is processed in
parallel mode. The reduce() terminal operation performs a functional reduction on
the elements of the stream, and it uses an accumulator and not a Predicate. The
sorted() intermediate operation sorts the elements according to their natural
order, or according to the total order specified by a Comparator.

16.3 (d) and (e)
(a) performs a functional reduction starting with the initial value 0 and adding all
values in the stream to compute the sum of the values.
(b) performs the same functional reduction as in (a) but in parallel mode.
(c) performs the same functional reduction as in (a), but does not use the initial
value of 0. It uses the value of the first element in the stream, if there is one. Since
the stream can be empty, it returns an OptionalInt object. The orElse() operation
on this OptionalInt object retrieves an int value if it has one; otherwise, the opera-
tion returns the value 0.
(d) uses 0 as the initial value, which means that this value will be returned if the
steam is empty. Therefore, the operation is guaranteed to return an int value, and
not an OptionalInt. The orElse() operation cannot be invoked on an int value, so
this code will not compile.
(e) refers to the variable sum within the lambda expression. As it has not been ini-
tialized, the code will fail to compile. Note that only final or effectively final vari-
ables can be referenced within a lambda expression.
(f) computes the sum of all values in the stream.

16.4 (b) and (d)
The stream will contain the following values: 0, 1, 2, 3, and 4. Note that x designates
the cumulative value and y designates the current element.
(a) performs functional reduction using the identity value 0 as the initial value and
the accumulator adds 1 to the cumulative result for each element. The reduction
proceeds as follows:

(x, y) -> x + 1
(0, 0) -> 0 + 1 => 1
(1, 1) -> 1 + 1 => 2
(2, 2) -> 2 + 1 => 3
(3, 3) -> 3 + 1 => 4
(4, 4) -> 4 + 1 => 5

(b) performs a similar functional reduction as in (a), but uses the value of the first
element (0) as the initial value. So it would result in one addition less than (a). The
reduction proceeds as follows:

(x, y) -> x + 1
(0, 1) -> 0 + 1 => 1
(1, 2) -> 1 + 1 => 2
(2, 3) -> 2 + 1 => 3

1718 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1718 Friday, December 2, 2022 4:23 PM
(3, 4) -> 3 + 1 => 4

(c) performs a functional reduction similar to (a), but now the accumulator
increases the value of the stream element y by 1. The reduction proceeds as follows:

(x, y) -> y + 1
(0, 0) -> 0 + 1 => 1
(1, 1) -> 1 + 1 => 2
(2, 2) -> 2 + 1 => 3
(3, 3) -> 3 + 1 => 4
(4, 4) -> 4 + 1 => 5

(d) performs a functional reduction using the initial value 0 and where the accu-
mulator returns the value of the stream element y. The reduction proceeds as fol-
lows:

(x, y) -> y
(0, 0) -> 0 => 0
(0, 1) -> 1 => 1
(1, 2) -> 2 => 2
(2, 3) -> 3 => 3
(3, 4) -> 4 => 4

(e) performs a function reduction which is similar to (c), except that it uses the
identity value of 1 as the initial value. The reduction proceeds as follows:

(x, y) -> y + 1
(1, 0) -> 0 + 1 => 1
(1, 1) -> 1 + 1 => 2
(2, 2) -> 2 + 1 => 3
(3, 3) -> 3 + 1 => 4
(4, 4) -> 4 + 1 => 5

(f) performs a functional reduction of the stream elements using the count() oper-
ation, which in this case results in the value 5.

16.5 (d)
(a) produces three groups based on the Integer values corresponding to the lengths
of String objects in the stream. The Predicate expression discards any value con-
taining the string "C".

1 []
2 [AA, DD]
3 [BBB, EEE]

(b) produces three groups based on the Integer values corresponding to the
lengths of String objects in the stream. The filter() operation discards all values
except those that contain the string "C".

1 [C]
2 []
3 []

(c) produces two groups based on the Integer values corresponding to the lengths
of String objects in the stream. However, the filter() operation discards any val-
ues containing the string "C", before the groups are created.

2 [AA, DD]
3 [BBB, EEE]

 16 STREAMS 1719

JSE17_OCP.book Page 1719 Friday, December 2, 2022 4:23 PM
(d) results in a single group based on the Integer values corresponding to the
length of String objects in the stream. The filter() operation discards any values
except those that contain the string "C", before any groups are created.

1 [C]

16.6 (d)
An infinite stream of string "A" is generated. The first peek() operation prints the
string "B". The Predicate of the takeWhile() operation returns false immediately
on encountering the first element in the stream which is "A". The takeWhile() oper-
ation only takes an element if it is not "A". It short-circuits the stream processing,
resulting in an output stream that is empty. The Consumer of the second peek() oper-
ation does not execute, as the stream is empty. The anyMatch() terminal operation
returns false on encountering an empty stream.

16.7 (a)
A stream of int values that correspond to character codes for letters 'a', 'b', 'c',
and 'd' is generated. These values are mapped to single-letter strings that are con-
verted to uppercase. The filter() operation discards a letter if it does not match a
vowel, which results in an output stream with only the element "A", which is
printed.

16.8 (b) and (c)
A stream of int values 0, 1, 2, 3, and 4 is generated. The filter() operation discards
all even numbers from this stream, retaining only the odd numbers 1 and 3, which
are then printed.
(a) generates a stream of int values 0, 1, 2, 3, 4, and 5 which is one value more than
in the program. Even numbers are discarded, retaining only the odd numbers 1, 3,
and 5 which are then printed.
(b) generates a stream of int values between 0 and 10. The takeWhile() operation
only takes values less than 5. It truncates the stream when the element is greater
than or equal to 5. The filter() operation discards all even numbers from the trun-
cated stream, retaining only the odd numbers 1 and 3, which are then printed.
(c) generates a stream of int values between 0 and 10, which is then truncated to
the first five values. The filter() operation discards all even numbers from this
truncated stream, retaining only the odd numbers 1 and 3, which are then printed.
(d) generates an infinite stream of 0s. The expression x++ will always evaluate to 0,
when x is initialized to 0. The takeWhile() operation will continue to take elements
from the stream, as its Predicate will always return true. The filter() operation
will continue to discard each element, as its value will always be 0. The terminal
operation will never get to process an element. This state of affairs will continue
indefinitely, with nothing being printed.
(e) does not compile because the variable x referred to in the lambda expression is
not final. The expression x++ will change the value in x, which is not permitted.

1720 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1720 Friday, December 2, 2022 4:23 PM
16.9 (d)
Two streams of String objects containing the values "A", "B", "C" and the values "X",
"Y", "Z" are concatenated into a single stream. The resulting stream has the values
"X", "Y", "Z", "A", "B", "C".
The functional reduction concatenates the elements from this new stream into a
single string. This operation returns an Optional<String>, as the reduction uses the
first element as the initial value. The result string in the Optional<String> is
returned by the get() method of the Optional class.
Note that a denotes the cumulative result and b denotes the current element in the
stream. The reduction operation is performed as follows:

(a, b) -> b + a
("X", "Y") -> "Y" + "X" => "YX"
("YX", "Z") -> "Z" + "YX" => "ZYX"
("ZYX", "A") -> "A" + "ZYX" => "AZYX"
("AZYX", "B") -> "B" + "AZYX" => "BAZYX"
("BAZYX", "C") -> "C" + "BAZYX" => "CBAZYX"

16.10 (a)
All process a stream of String objects that are one-letter strings from "A" to "E".
Grouping is done based on a classifier which is a Function, whereas partitioning is
done based on a Predicate. Identical lambda expressions implement the classifier
and the predicate in all options. The lambda expression returns true if the single-
letter string is a vowel. The map created by both operations will have the type
Map<Boolean, List<String>>, where the keys are Boolean and the value associated
with a key is a List<String>. The list is created implicitly, as in (a) and (b), or explic-
itly in a downstream collector, as in (c) and (d).
The filtering is done by the same predicate in all options, discarding any one-letter
string that is greater than the string "A". Effectively, the only element processed by
the stream is the string "A".
The partitioningBy() operation always creates entries for the Boolean.TRUE and
Boolean.FALSE keys in the result map, even if no values can be computed for these
keys from the stream elements. On the other hand, the groupingBy() operation cre-
ates entries for keys computed by its classifier—that is, an entry is created for the
key Boolean.TRUE or Boolean.FALSE depending on the elements in the stream. How-
ever, when the filtering() operation is used as a downstream collector in the
grouping operation, entries for both the Boolean.TRUE and Boolean.FALSE keys are
created, regardless of whether any value is associated with these keys.
In (a), grouping creates only one entry for the Boolean.TRUE key in the result map
based on its Predicate being true, since the only element "A" in the stream is a
vowel. The output is the following:

true [A]

In (b), partitioning creates two entries in the result map: one for the Boolean.TRUE
key (vowels) and one for the Boolean.FALSE key (consonants). The only element "A"
is associated with the true key as it a vowel. The output is the following:

false []

 16 STREAMS 1721

JSE17_OCP.book Page 1721 Friday, December 2, 2022 4:23 PM
true [A]

In (c), grouping creates two entries: one for the Boolean.TRUE key (vowels) and one
for the Boolean.FALSE key (consonants), as its downstream collector is a filtering()
operation. Since the string "A" is a vowel, it is accumulated in the list associated
with the Boolean.TRUE key. The list associated with the Boolean.FALSE key remains
empty. The output is the following:

false []
true [A]

In (d), partitioning creates two entries: one for the Boolean.TRUE key (vowels) and
one for the Boolean.FALSE key (consonants), regardless of its downstream collector.
Since the string "A" is a vowel, it is accumulated in the list associated with the Bool-
ean.TRUE key. The list associated with the Boolean.FALSE key remains empty. The
output is the following:

false []
true [A]

This means that (a) resulted in only one entry in the map, while the other resulted
in two identical entries.

16.11 (d)
It is important to note that the stream of strings is not processed separately from
the stream of chars, but rather they are fused into a single stream pipeline. This is
because only one terminal operation exists in the stream pipeline. This means that
the parallel processing applies to the entire pipeline. The sort() operation sorts the
characters in the flattened stream, but the forEach() operation cannot be relied
upon to respect the order, especially in a parallel stream. The forEachOrdered()
operation will give a deterministic result regardless of the execution mode of a
stream. The result from the program is therefore unpredictable.

16.12 (c) and (d)
The filter() method accepts a Predicate. The methods peek() and forEach()
accept a Consumer. map() accepts a Function, max() accepts a Comparator, and find-
Any() does not accept any parameters.

16.13 (b) and (f)
The methods peek(), map(), filter(), and sorted() are all intermediate operations.
The methods forEach() and min() are terminal operations.

16.14 (b) and (d)
Short-circuit methods may produce finite results for potentially an infinite stream.
For example, the operations limit() and anyMatch() are short-circuit operations. A
short-circuit operation terminates the stream pipeline, whether or not all elements
in the stream have been processed.

16.15 (f)
These statements all perform an equivalent functional reduction of counting the
number of elements in the stream. Empty string or null elements are still counted
as elements. Thus all of these operations return the value 6. Counting the number

1722 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1722 Friday, December 2, 2022 4:23 PM
of elements in the stream can be achieved using the count() method of the Stream
interface, or the counting() method provided by the Collectors class. Another
solution is to map all stream elements to the value 1, and then summing up the 1s
will give the same result.

16.16 (b) and (d)
In (a), a set of String objects is constructed that contains the values "XX", "XXXX", "",
and "X" because the filter() method removes all null elements from the stream.
Notice the absence of the duplicate values due to the fact that a Set does not allow
duplicates. All strings of this set are then processed in another stream that maps
the strings to int values according to the length of each string. This results in the
output 0124, because sorting of values is done before printing.
In (b), another set of Integer objects is constructed based on the same values. How-
ever, in this case all null elements and empty strings are converted to the int value
of 0, and then removed from the stream by the filter() method. All values in the
result set are then processed in another stream that sorts the elements and prints
the output 124.
(c) applies similar logic to that in (b), except that it uses a collector that assembles
the values in a List rather than a Set. Duplicate elements are allowed in lists, result-
ing in the output 1224.
(d) is similar to (c), but it applies the distinct() operation to the stream elements,
removing any duplicates, and resulting in the output 124.

17 Date and Time

17.1 (b)
The first LocalDate object represents the date January 31, 2021, thus representing 31
days since the start of the year. The second LocalDate object is the result of adding
exactly one month to the first LocalDate object. Since 2021 is not a leap year, it rep-
resents the date February 28, 2021, which is 59 days from the start of the year. The
third LocalDate object is the result of subtracting one month from the second Local-
Date object, resulting in the date January 28, 2021.

17.2 (a)
A LocalDate object is initially constructed to represent the date January 1, 2021. A
new LocalDate object is then constructed based on this date, by first changing the
day of the month to be 31, which is the last day of this month. Next, the month in
this date is changed to February. It is important to remember that February in 2021
has only 28 days, so the resulting LocalDate object would have to represent the last
day of February.

17.3 (d)
The LocalDateTime denoted by d1 represents 2021-04-01T00:00.
The method toInstant() converts d1 by applying zone offset +18:00—that is, 18
hours ahead of the time at UTC.

 17 DATE AND TIME 1723

JSE17_OCP.book Page 1723 Friday, December 2, 2022 4:23 PM
To convert d1 to an Instant denoted by i1 at zero UTC offset, we must subtract 18
hours, resulting in the instant 2021-03-31T06:00:00Z.
The ofInstant() method converts i1 to LocalDate, but no offset adjustment is nec-
essary to the date represented in i1 as it represents a point in time on the UTC time-
line.

17.4 (c)
Two ZonedDateTime objects are constructed exactly one hour apart. However, two
new zoned date-time objects are create from these two, and the duration between
them is calculated. These new zoned data-time objects are an extra hour apart
because one subtracts and the other one adds 30 minutes, thus increasing the time
difference to two hours between 23:30CET and 00:30GMT. Another way to view
this is to convert the time in one time zone (23:30CET) to the other time zone
(22:30GMT). The difference between 22:30GMT and 00:30GMT is two hours.

17.5 (d)
Both Instant and LocalTime can express values with nanosecond precision. The
between() method of the Duration can be used to calculate the time difference
between two temporal objects—that is, between objects of the classes LocalDate,
LocalTime, LocalDateTime, ZonedDateTime, and Instant. The between() method of the
Period can be used to calculate the date-based amount of time between two Local-
Date objects.

17.6 (c)
A LocalDateTime object is created that represents 2021-04-01T08:15. Thirty minutes
are subtracted from this date-time object, returning a new date-time object. The
day of the month is set to 12 for the resulting date-time object. However, the refer-
ence value of the final object is not assigned to any reference. LocalDateTime objects
are immutable, thus the date-time object denoted by dt is never modified.

17.7 (e)
Unlike Period, when Duration is applied to a ZonedDateTime object, it disregards
daylight savings.
A Period is a date-based amount of time (in terms of years, months, and days), and
therefore cannot express an amount of time smaller than one day. A Period of one
hour cannot be created.
Unlike ZonedDateTime objects, LocalTime and LocalDateTime objects have no time
zone, so they do not take into consideration daylight savings.
A Period of one day may or may not be treated the same as a Duration of 24 hours,
when using these objects with ZonedDateTime because of the differences in the han-
dling of daylight savings.
Finally, both Period and Duration can express positive and negative amounts of
time.

17.8 (e)
The plus() method of the LocalDate class returns a LocalDate. The plus() method
of the LocalDateTime class returns a LocalDateTime.

1724 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1724 Friday, December 2, 2022 4:23 PM
17.9 (d)
The plus() method of the LocalDate class can accept a Duration object, but in this
scenario it will throw an exception at runtime. The reason for this is that Duration
is expressed in seconds and nanoseconds, which cannot be applied to a LocalDate
object.

17.10 (a) and (e)
In order to compute the desired result, a time of 30 minutes and two days should
be added to the given LocalDate object.
(a) combines a LocalTime object with a value of 30 minutes to the LocalDate object
using the atTime() method, returning a LocalDateTime object. Then a duration of 48
hours is added to this LocalDateTime object.
(b) attempts to add a Duration of 48 hours to the LocalDate object, which will result
in an UnsupportedTemporalTypeException. The reason for this is that Duration is
expressed in seconds and nanoseconds, which cannot be applied to a LocalDate
object.
(c) attempts to create a LocalTime object, with an amount of time greater than 23
hours, which is invalid for a LocalTime object, and will result in a DateTime-
Exception.
(d) attempts to create a LocalTime object with a negative number of hours, which is
also invalid, and would result in a DateTimeException.
(e) combines a value of 30 minutes to the LocalDate object using the atTime()
method and returning a LocalDateTime object. Then a duration of 48 hours is added
to this LocalDateTime object. The atTime() method is an overloaded method.

17.11 (c)
Five LocalDate objects are created in this example. The atTime() method creates a
LocalDateTime object. The other five methods create a new LocalDate object.

17.12 (d)
The method between() calculates the amount of time that has elapsed between a
LocalTime object and a LocalDateTime object. A LocalTime object is derived from the
second argument, which is a LocalDateTime object. The result would have been a
runtime exception if the two arguments had been interchanged: We cannot derive
a LocalDateTime object from a LocalTime object.
The value of the first argument of the between() method represents a time that is
after the time represented by the derived LocalTime object. Therefore, the resulting
Duration object will have negative values. The time difference between 17:30 and
15:15 is two hours and 15 minutes.

17.13 (d)
The required LocalDateTime object is exactly 25 hours (one day and one hour) ahead
of the initial LocalDateTime object.
(a) adds one hour to the initial LocalDateTime object and changes the date to the
next day.

 18 LOCALIZATION 1725

JSE17_OCP.book Page 1725 Friday, December 2, 2022 4:23 PM
(b) adds one day to the initial LocalDateTime object and changes the time by one
hour.
(c) adds two days to the initial LocalDateTime object and subtracts 23 hours, which
results in the required 25 hours being added to the initial LocalDateTime object.
(d) adds two days to the initial LocalDateTime object and subtracts 16 hours and 15
minutes, which results in the LocalDateTime object having the value 2021-04-
03T23:15.
(e) and (f) both adds a Duration of 25 hours (60 * 25 minutes) to the initial LocalDa-
teTime object.

18 Localization

18.1 (a)
For the French locale, the resource bundle for the default locale (US) is loaded, as
there is no resource bundle file named MyResources_fr_FR.properties. The values
of the keys in this resource bundle are printed. The key "farewell" has duplicates.
The last value ("Bye!") specified for this key is returned.

18.2 (b)
The resource bundles loaded for Locale.ENGLISH are:

MyResources_en.properties
MyResources.properties

The method getString() returns the value "Have a good one!" for the key "fare-
well" in the resource bundle file MyResources_en.properties.

18.3 (b)
The code prints all available key–value pairs in the resource bundle for the English
locale. The resource bundles loaded for the English locale are:

resources_en.properties
resources.properties (parent)

The key set contains the keys from both bundles: k1 and k2. The key k1 is found in
the resources_en.properties bundle with the value c, and the key k2 is found in the
resources.properties bundle with the value b. Only if a key is not found in the cur-
rent resource bundle, will it be looked up in its parent bundle, and so on. The
resource_en_GB.properties bundle is not loaded by this code.

18.4 (b)
The code sets the default locale to the Russian locale, but then prints all available
key–value pairs in the resource bundle for the English locale. The resource bundles
loaded for the English locale are:

resources_en.properties
resources.properties (parent)

As appropriate bundles were found for the English locale, the default locale Rus-
sian bundle is not loaded.

1726 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1726 Friday, December 2, 2022 4:23 PM
The key set contains the keys from both bundles: k1 and k2. The key k1 is found in
the resources_en.properties bundle with the value c, and the key k2 is found in the
resources.properties bundle with the value b. Only if a key is not found in the cur-
rent resource bundle, will it be looked up in its parent bundle, and so on.

18.5 (a), (b), (c), (d), and (e)
The patterns produce the following output:
 Pattern Output

(a) .00 |.46|
(b) .## |.46|
(c) .0# |.46|
(d) #.00 |.46|
(e) #.0# |.46|
(f) #.## |0.46|
(g) .#0 Throws java.lang.IllegalArgumentException.

18.6 (c)
Notice that the code sets the number of decimal digits to two. First, the rounding
mode is set to HALF_UP, which would round a double value of 9876.54321 to 9876.54.
Then the same number is formatted again, but this time with the rounding mode
set to HALF_DOWN, which would actually produce the same result. Because the third
digit after the decimal point is 3 and not 5, it has no effect on the rounding by the
HALP_UP or HALF_DOWN rounding mode.

18.7 (d)
Notice that the code sets the number of decimal digits to two. The value is a Big-
Decimal and therefore is represented with a higher precision than it would be in a
double value. The third digit after the decimal point is 5; therefore, the discarded
fraction is 0.5. In this case, HALF_DOWN mode rounds up if the discarded fraction is >
0.5, which it is not, resulting in the formatted value $9,876.54. HALF_UP mode
rounds up if the discarded fraction is >= 0.5, resulting in the formatted value
$9,876.55.

18.8 (d)
The default short date format for the British locale is dd/MM/YYYY. However, this is
not relevant in this case, because a DateTimeFormatter is used to format a LocalDate
object, which has no time part, and thus results in an UnsupportedTemporalType-
Exception.

18.9 (h)
A DateTimeFormatter object is configured to use a pattern, where d stand for the day
of the month, a for an am/pm marker and y for a year. It is configured to use the
UK locale. Notice that the time value in the LocalDateTime object is 14:30, which
makes it pm.

18.10 (e)
In the code, the default locale is initially set to UK (British). A DateTimeFormatter is
created to format a date according to the MEDIUM style format (MMM d, yyyy). This for-

 18 LOCALIZATION 1727

JSE17_OCP.book Page 1727 Friday, December 2, 2022 4:23 PM
matter formats the date to the string "Apr 1, 2021". The reference s1 denotes this
string.
Next, the default locale is set to France. However, the DateTimeFormatter is immu-
table, and the date is formatted to the string "Apr 1, 2021". The reference s2 denotes
this string.
Lastly, the localizedBy() method returns a new DateTimeFormatter object with the
US locale, but it is not assigned to any reference. The date is again formatted by the
previous DateTimeFormatter to the string "Apr 1, 2021". The reference s3 denotes
this string. This means that only the condition in the first if statement is true.

18.11 (d)
NumberFormat interprets a floating-point number as a percentage, considering 1.0 to
be equal to 100%. The default percentage format object rounds the value to two
decimal digits, so it would round the double value 0.987654321 to 0.99. The value
0.99 represents 99%.

18.12 (a)
The code creates a LocalDateTime object (date1) first and adds a London time zone
to it to create a ZonedDateTime object (date2).
Next, two DateTimeFormatter objects, df1 and df2, are created based on the same
pattern "hz", and the time zones for London (GMT) and Paris (CET) are associated
with them, respectively. The "hz" pattern stands for hour and time zone. Both date1
and date2 are formatted by each DateTimeFormatter.
The DateTimeFormatter df1 will format the hour in date1, but will supply the time
zone, as this date object has no time zone, creating the string "1GMT". It will format
date2 as "1GMT", as the ZonedDateTime date2 and the DateTimeFormatter df1 have the
London time zone.
The DateTimeFormatter df2 will format the hour in date1, but will supply the time
zone, as a date object has no time zone, creating the string "1CET". It will format
date2 as "2CET", as the ZonedDateTime date2 and the DateTimeFormatter df2 have dif-
ferent time zones. Therefore, the London time (1h) in date2 is interpreted as Paris
time (2h) by the DateTimeFormatter.

18.13 (d)
Values in single quotes are treated as verbatim text, rather than format elements.
Only two values are actually supplied for the message pattern, so the format ele-
ment with index 3 receives no value and will thus be formatted as text.

18.14 (b)
During the format operation, elements of the values array are interpreted by the
MessageFormat and ChoiceFormat objects to determine the limit value that affects the
selection of the appropriate choice format and the value that should be substituted
into a message pattern. In this code, the value 4 in values[0] is the limit value, and
the value 5 in values[1] is the value to format, resulting in the choice pattern
"{1}th" at formats[4] to be chosen to format the value 5. The formatted result is
"5th".

1728 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1728 Friday, December 2, 2022 4:23 PM
18.15 (b)
The limit values are given by the limits array. Note that the limit values are not
ordered.

limits[0] limits[1] limits[2]
 0 -1 1

The corresponding choice formats are given by the formats array:
formats[0] formats[1] formats[2]
 "zero" "negative" "positive"

The supplied value 0.9 is greater than 0, and of course also greater than –1, but less
than 1. It satisfies the following relation, determining index 1 in the limits array to
choose the choice format.

limits[1] <= 0.9 < limits[2]
 -1 <= 0.9 < 1

Index 1 in the formats array determines the choice format to be the string "nega-
tive".
The value 0.9 results in the choice format at index 1 in the formats array to be cho-
sen.

18.16 (a)
The default locale is set to the US locale and a DateTimeFormatter object is created
to format dates in the MEDIUM style format (MMM d, yyyy).
At (1), a string is parsed using the dtf formatter, according to the MEDIUM date for-
mat style and the default locale (in this case, US). The string is specified in the
MEDIUM format style for the US locale.
At (2), a string is parsed to a date. As no formatter is specified, the string is
expected to be in the ISO format, which it is.
At (3), the LocalDate d is formatted using the dtf formatter that uses the MEDIUM for-
mat style and the default locale (in this case, US).

18.17 (c)
The default locale is set to the US locale and a DateTimeFormatter object is created
to format dates in the SHORT style format (M-d-yy).
At (1), a string is parsed to a date. As no formatter is used, the string is expected to
be in the ISO format, which it is.
At (2), a string is parsed using the dtf formatter, according to the SHORT date format
style and the default locale (in this case, US). The string is specified in the SHORT for-
mat style for the US locale.
Finally, this date is printed using the default ISO format.

18.18 (d)
The default locale can be defined explicitly; otherwise, it is the platform locale that
is supplied by the runtime environment. The default locale is not necessarily the
US locale. The default format for LocalDate objects is ISO_DATE.

 19 JAVA MODULE SYSTEM 1729

JSE17_OCP.book Page 1729 Friday, December 2, 2022 4:23 PM
19 Java Module System

19.1 (b)
Code in the module ui can access public types defined in the packages store.fron-
tend and store.backend via direct dependency, but also public types defined in the
package product.data via transitive dependency. However, module ui does not
require module customer, thus it cannot access public types from the customer.data
package. This means that (a) is false, but (b) is true.
Code in the module customer cannot access public types from the product.data
package, despite the presence of transitive dependency via the modules ui and
store. This is because module customer does not have a direct dependency on mod-
ule store, which has a transitive dependency on module product. This means that
(c) and (d) are both false.
Code in the module product cannot access public types from the customer.data
package because of the absence of a dependency between these modules. This
means (e) is false.

19.2 (e)
Only public types in the exported packages of a module are accessible to code in
modules that require this module.

19.3 (e)
The java.se module is at the root of the module graph, as it depends on the highest
number of modules in the graph. The java.base module is at the bottom of the
module graph, and does not depend on any module. The java.logging module
depends on the java.base module.

19.4 (c) and (f)
Only public types in the exported package animals.primates are accessible to code
in module zoo.

19.5 (a) and (d)
Module music should declare a requires directive that should specify module pro-
duction. Also, module production should export package production.company.

19.6 (c) and (d)
An automatic module is a plain JAR that is loaded from the module path. Plain
JARs loaded from the class path are included in the unnamed module.

19.7 (a)
In (a), code in module store can access types defined in package product.data
because this package is exported by module product, which module store actually
requires. Code in module store can access types defined in package market-
ing.offers by reflection as this package is opened by module marketing.
(b) is incorrect because code in module marketing cannot access types defined in
packages product.data and product.pricing because it does not require module
product.

1730 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1730 Friday, December 2, 2022 4:23 PM
(c) is incorrect because code in module marketing cannot access types defined in
package product.data as it does not require module product. However, code in
module marketing can access types defined in package store.frontend, as module
marketing requires module store.
(d) is incorrect because code in module store can access types defined in package
product.data, but not in package product.pricing, as this package is only exported
to module marketing.
(e) is incorrect because code in module product cannot access types defined in
package store.frontend as module product does not have a dependency on module
store. However, code in module product can access types in the open package mar-
keting.offers.

19.8 (b)
The requires directive specifies module names, not package names, which disqual-
ifies (a) and (d). In (c), module music does not depend on module artist, and there-
fore cannot access types in package artist.recoding. This leaves (b), which works
because module music has a direct dependency on module production, and also has
a dependency on module artist via the requires-transitive directive in module
production.

19.9 (b)
Service consumer module player does not need to declare any dependency on ser-
vice provider module brass. Service consumer module player needs to declare a
dependency on service module music, and specify which abstract type (in this case
music.sound.Instrument) defines the service.

19.10 (b) and (e)
The jlink tool creates platform-specific runtime images that can be deployed. Run-
time images contain application code, as well as the necessary JDK modules and
tools, among other artifacts. However, no installation of a separate JVM is required
to run the application.

19.11 (a) and (b)
Module music requires module instrument, which in turn requires module music.
This results in a cyclic dependency, and thus is illegal and would cause these mod-
ule declarations not to compile. Both modules music and artist export the same
package preferences.style, which implies that this package is a split package,
which is illegal and would cause this module declaration not to compile. It is
allowed to declare the opens directive in a module declaration. It is also allowed to
declare a qualified exports directive even if the specified module does not require
this module.

19.12 (e)
Both modular and plain JARs can be used in the context of the class path as well as
the module path. A listing of modules using the --list-modules of the java tool
includes all observable modules, but not the unnamed module, as it has no name.
The name of an automatic module is derived from the JAR file name, unless it is

 20 JAVA I/O: PART I 1731

JSE17_OCP.book Page 1731 Friday, December 2, 2022 4:23 PM
specified in the MANIFEST.MF file. There is only one unnamed module, and it obvi-
ously does not have a name, which makes the JAR file name irrelevant in this case.

19.13 (c) and (d)
An automatic module implicitly requires all other modules. An explicit module
cannot access code in the unnamed module using the requires directive, since the
unnamed module has no name. If an explicit module needs to access code in an
automatic module, it must declare a requires directive to specify this automatic
module.

20 Java I/O: Part I

20.1 (d)
The read() method will return -1 when the end of the stream has been reached.
Normally an unsigned 8-bit int value is returned (range from 0 to 255). I/O errors
result in an IOException being thrown.

20.2 (d)
The print() methods of the PrintWriter do not throw an IOException when the end
of the file is reached, but instead sets an error status that can be checked.

20.3 (d)
The read() method of an InputStreamReader returns -1 when the end of the stream
is reached.

20.4 (b)
The readLine() method of a BufferedReader returns null when the end of the file is
reached.

20.5 (c)
An ObjectOutputStream can write both objects and Java primitive types, as it imple-
ments the ObjectInput and the DataInput interfaces. The serialization mechanism
will follow references in objects and write the complete object graph.

20.6 (a), (b), (d), and (i)
Static fields and transient instance fields are not serialized—they are treated the
same way when it comes to serialization. The accessibility modifier private does
not determine whether an instance field should be serialized or not. Serializable
is a marker interface. Subclass objects are serializable if the superclass is serializ-
able. The modifier final of a class does not determine whether the class is serializ-
able or not.

20.7 (b)
(a) is incorrect because there is no requirement that all versions of a serializable
class must provide a declaration of a serialVersionUID.
In (b), there is no guarantee that a streamed object based on one version can be
deserialized based on the other, even if the two versions of the class have the same
serialVersionUID. It depends on whether the changes in the class versions are com-

1732 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1732 Friday, December 2, 2022 4:23 PM
patible with deserialization. For example, changing the type of a field is an incom-
patible change.
(c) is incorrect because serialVersionUID in two unrelated serializable classes is
also unrelated and need not be unique.
(d) is incorrect because there is no requirement that the serialVersionUID of a seri-
alizable class must be incremented every time a new version of the class is created.
(e) is incorrect because any class can declare a static final field of type long having
the name serialVersionUID, but it has meaning for serialization only in a serializ-
able class.

20.8 (e)
During deserialization, the zero-argument constructor of the superclass Person is
called because this superclass is not Serializable.

20.9 (c)
If the superclass is Serializable, then the subclass is also Serializable—resulting
in the printout in (c).

20.10 (e)
Note that only GraduateStudent is Serializable. The field name in the Person class is
transient. During serialization of a GraduateStudent object, the fields year and
studNum are included as part of the serialization process, but not the field name. Dur-
ing deserialization, the private method readObject() in the GraduateStudent class is
called. This method first deserializes the GraduateStudent object calling the no-
argument constructor in the superclasses, but then initializes the fields with new
values. Without the private readObject() method, the output would be as in (d).

20.11 (a)
Constructors for Product and Food are triggered when a new Food object is created.
These constructors print "product food ". After that, the product object is serialized.
Product is a superclass of Food and is marked as Serializable, which implies that
all of its subclasses, such as Food, are also serializable. Values of Product name and
Food calories are included in the serialization of the product object.
No constructors are triggered during deserialization, thus Product and Food con-
structors do not print any values. No errors are triggered during deserialization,
and values of Product name and Food calories are restored and printed.

20.12 (c)
A buffer (a char array of length 4) is used to read and write characters to files. In
the while loop, this buffer is filled with characters from the test1.txt file and writ-
ten to the text2.txt file. On the first iteration, the characters a, b, c, and d are read
from the text1.txt file, filling the buffer to full capacity, and then written to the
test2.txt file. On the second iteration, the remaining characters e, f, and g are read
from the test1.txt file into the buffer. These characters are read into the first three
elements of the buffer. The fourth element in the buffer still contains the character
d from the previous read operation. The buffer contains the characters e, f, g, and
d, which are written to the text2.txt file. The next read operation returns -1 since

 21 JAVA I/O: PART II 1733

JSE17_OCP.book Page 1733 Friday, December 2, 2022 4:23 PM
the end of the file has been reached in the text1.txt file, thereby terminating the
loop.

20.13 (c)
Both fields numberOfTracks and currentTrack are not included when an Album object
is serialized, as the field numberOfTracks is static and the instance field current-
Track is transient. Only the instance field title (having the value "Songs") is
included in the serialization of the Album object.
The readObject() method of the Album class is not private, but public, and is never
called during deserialization to change the state of the Album object created at dese-
rialization.
The Album object created at deserialization is initialized with the instance field title
having the value "Songs" and the transient field currentTrack initialized to the
default int value 0.
Deserialization requires definition of the class, thus an Album object created at dese-
rialization can access the static field numberOfTracks in its class that has the value 5.

21 Java I/O: Part II

21.1 (b) and (c)
Compiling and running the program results in the following output:

/wrk/./document/../book/../chapter1
/wrk/chapter1
chapter1
./document/../book/../chapter1
./document/../book/..

Note that only the Path.toRealPath() method requires that the file exists; other-
wise, it throws a java.io.IOException.

21.2 (c)
Compiling and running the program results in the following output:

./wrk/src

./wrk

./wrk/src

./wrk/src/readme.txt

./wrk

./wrk/src

./wrk/src/readme.txt

The Files.list() method creates a stream based on the immediate entries of the
directory path passed as a parameter. The Files.walk() method traverses depth-
first every entry in the hierarchy of the directory passed as a parameter. The
Files.find() method will find every entry in the hierarchy of the directory passed
as a parameter, since the matcher argument is always true and will traverse to
depth 2 (i.e., equal to the actual depth of the directory).

1734 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1734 Friday, December 2, 2022 4:23 PM
21.3 (a)
There are three absolute Path objects (starting at the root (/) of the file system) con-
structed in this example:
Path earth is defined as "/planets/earth".
Path moonOrbit is defined as "/planets/earth/moon/orbit.param"—that is, as a child
of Path earth.
Path mars is defined as "/planets/mars"—that is, as a sibling of Path earth.
There is one relative path:
Path fromMarsToMoon is defined as "../earth/moon/orbit.param "—that is, as a rela-
tive path between Path mars and Path moonOrbit.
These Path objects do not have to actually exist in the file system, so long as a pro-
gram makes no attempt to validate or access these paths. Thus no runtime excep-
tion will be thrown.

21.4 (b)
First, a Path object is created with the relative path "./mars/../earth", that has four
name elements. Next, this Path is normalized, resulting in a Path object with the
path string "earth" that has one name element. Then it is converted to the absolute
path "/planets/earth" which has two name elements. If this path had not have
been normalized, then the absolute path would be "/planets/./mars/../earth",
which has five name elements. Whether the paths exists in the file system is irrel-
evant, since this program makes no attempts to actually validate or access any of
these paths.

21.5 (d)
The list() method of the Files class creates a stream of Path objects denoting the
immediate entries in the given directory. Unlike the method walk(), the list()
method does not traverse the contents of the subdirectories. The stream created by
the list() method will include the Path objects that denote the following paths:

/test/a.txt
/test/c
/test/e.txt
/test/f.txt

A filter is applied to this stream of Path objects, which uses the method getFile-
Name() of the Path interface to return the last name element of the Path. The filter
will discard any entry whose file name does not end with "txt". This leaves only
the following paths in the stream:

/test/a.txt
/test/e.txt
/test/f.txt

These paths are then printed to the console.

21.6 (g)
The walk() method of the Files class creates a stream of Path objects that denote all
entries in the given directory, including its subdirectories, by traversing the direc-

 21 JAVA I/O: PART II 1735

JSE17_OCP.book Page 1735 Friday, December 2, 2022 4:23 PM
tory hierarchy depth-first. The stream will include Path objects that denote the fol-
lowing paths:

/test/a.txt
/test/a.txt/b.txt
/test/c
/test/c/d.txt
/test/e.txt
/test/f.txt

A map operation is applied to this stream of Path objects, converting it to a stream
of String objects, where each String represents the last name element of the path—
that is, the file name:

a.txt
b.txt
c
d.txt
e.txt
f.txt

A filter is applied to this stream of String objects which excludes strings that do not
end in the file extension "txt". This leaves only the following paths in the stream
(notice that these strings are sorted):

a.txt
b.txt
d.txt
e.txt
f.txt

These String objects are then printed to the console.

21.7 (b)
The method Files.createDirectories() does not throw an exception when trying
to create a directory that already exists. However, the method Files.createDirec-
tory() does.
Method Files.delete() does throw an exception when trying to delete a non-exis-
tent directory.
Method Files.move() does throw an exception when moving a non-empty direc-
tory, but only if it actually needs to move all files within this directory to another
file system. Moving a directory within the same file system does not actually per-
form any move operations for the directory. It only changes the path of the direc-
tory.
Method Files.exists() returns a boolean value to indicate the existence or non-
existence of a path.

21.8 (c)
Two Path objects are initialized. However, both of these Path objects reference the
same file. This is because p1.getName(1) returns a relative path to directory joe,
which is the second component in this path, considering that the first component
is directory users with index 0. This path is then used to resolve another relative
path test/a.jpg, which results in the path joe/test/a.jpg. And finally, the path /

1736 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1736 Friday, December 2, 2022 4:23 PM
users is used as a root directory to resolve this path, resulting in the path /users/
joe/test/a.jpg, which is identical to the path referenced by p1.
Next, an attempt is made to move the entry at path p1 to path p2, where both denote
the same directory entry. In this scenario, Files.move() method performs no action
because it can detect that both the source and the destination path are the same.

21.9 (c)
In this example, the p1 reference represents an absolute path, and the p2 reference
represents a relative path. Keep in mind that an absolute path starts from the root
of a file system, in this case designated by the slash character (/).
The purpose of the method resolve() is to construct a path where a relative path is
appended to another relative path, or to an absolute path. p1.resolve(p2) results in
the relative path store being appended to the absolute path /test. As it is not pos-
sible to append an absolute path to another path, p2.resolve(p1) returns the abso-
lute path /test denoted by the reference p2.

21.10 (d)
This question assumes the existence of the destination file, yet this code example
does not specify the replace-existing file copy option:

Files.copy(p1, p2, StandardCopyOption.REPLACE_EXISTING);

Therefore, the code will throw a java.nio.file.FileAlreadyExistsException.

21.11 (d)
The code reads lines of text from a file as a stream of strings. A filter operation dis-
cards lines that do not start with <. Then each line in the stream is mapped by the
map operation to a >. The reduction operation is applied to concatenate each >. The
resulting string ">>>>>" is printed as there are five lines that are mapped to >.

21.12 (d)
Only permissions explicitly added to the set are applied, all other permissions are
removed. In order to be able to access files inside a directory, the directory needs
to have execute permission. However, the permissions for the /test/data directory
are changed to read-only in the code. Therefore, an attempt to access the info.txt
file in this directory by the walk() method will throw an AccessDeniedException,
that will terminate the stream processing.

21.13 (d)
The thing to note is that a PosixFileAttributeView can be used to set permissions
for the file that is associated with it. However, the PosixFileAttributes object
obtained from the PosixFileAttributeView will only reflect the file attribute values
at the time it was obtained from the view. It is not updated automatically when the
file attribute values change in the file. A new PosixFileAttributes object must be
obtained from the view to reflect any changes in the file attribute values.
The program first removes all permissions from the file. A PosixFileAttributeView
is created on the file, and the PosixFileAttributes object associated with the view
is obtained. This PosixFileAttributes object is used in the rest of the program, and

 22 CONCURRENCY: PART I 1737

JSE17_OCP.book Page 1737 Friday, December 2, 2022 4:23 PM
it will always reflect that the file has no permissions, regardless of any permissions
set in the file through the view.
Note also that removing an element (OWNER_WRITE permission) from an empty set
does not throw an exception. The permissions of the file are changed as follows,
but the changes are not reflected by the PosixFileAttributes object:

r---w-r--
-w-------

21.14 (a)
First, this program converts a URI object to a Path object. Path p1 references the same
file as path p2. No action is taken by the copy() method when the source file and
the destination file are the same. Lastly, a Path object is converted to a legacy File
object. This program runs successfully and produces no output.

22 Concurrency: Part I

22.1 (e)
The program will compile without errors, and will simply terminate without any
output when run. Two thread objects will be created, but they will never be started.
The start() method must be called on the thread objects to make the threads exe-
cute the run() method asynchronously.

22.2 (d)
Note that calling the run() method on a Thread object does not start a thread. In the
statement:

 new Thread(new R1(),"|R1a|").run();

the run() method of the Thread class will invoke the run() method of the Runnable
object (R1) that is passed as an argument in the constructor call. In other words, the
run() method of the R1 class is executed in the R2 thread—that is, the thread that
called the run() method of the Thread class and whose name will be printed.
However, the statement:

 new Thread(new R1(),"|R1b|").start();

starts the |R1b| thread, and the run() method of the Thread class will invoke the
run() method of the Runnable object (R1) that is passed as an argument in the con-
structor call, but it is executed by the |R1b| thread whose name will be printed.
The last statement in the run() method of the R2 class is executed by the |R2| thread
whose name will be printed.

22.3 (c)
Note that the complete signature of the run() method does not specify a throws
clause, meaning it does not throw any checked exceptions. However, a method can
always be implemented with a throws clause that specifies unchecked exceptions, as
in the case of the run() method.

1738 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1738 Friday, December 2, 2022 4:23 PM
22.4 (a) and (e)
Because the exact behavior of the thread scheduler is undefined, the text A, B, and
End can be printed in any order. The thread printing B is a daemon thread, which
means that the program may terminate before the thread manages to print the let-
ter.

22.5 (a) and (e)
The lock is also released when an uncaught exception occurs in the statement.

22.6 (c) and (d)
First note that a call to sleep() does not release the lock on the Smiley.class object
once a thread has acquired this lock. Even if a thread sleeps, it does not release any
locks it might possess.
(a) does not work, as run() is not called directly by the client code.
(b) does not work, as the infinite while loop becomes the critical region and the lock
will never be released. Once a thread has the lock, other threads cannot participate
in printing smileys.
(c) works, as the lock will be released between each iteration, giving other threads
the chance to acquire the lock and print smileys.
(d) works for the same reason as (c), since the three print statements will be exe-
cuted as one atomic operation.
(e) may not work, as the three print statements may not be executed as one atomic
operation, since the lock will be released after each print statement.
Synchronizing on this does not help, as the printout from each of the three print
statements executed by each thread can be interspersed.

22.7 (d)
A thread terminates when the execution of the run() method ends. The call to the
start() method is asynchronous—that is, it returns immediately, and it moves the
thread to the READY substate. Calling the sleep() or wait() method will block the
thread.

22.8 (b) and (d)
The nested createThread() call is evaluated first, and will print 23 as the first num-
ber. The last number the main thread prints is 14. After the main thread ends, the
thread created by the nested createThread() completes its join() call and prints 22.
After this thread ends, the thread created by the outer createThread() call com-
pletes its join() call and prints the number 12 before the program terminates.

22.9 (e)
The exact behavior of the scheduler is not defined. There is no guarantee that a call
to the yield() method will grant other threads use of the CPU.

22.10 (b)
The final method notify() is defined in the Object class.

 23 CONCURRENCY: PART II 1739

JSE17_OCP.book Page 1739 Friday, December 2, 2022 4:23 PM
22.11 (c)
An IllegalMonitorStateException will be thrown if the wait() method is called and
the current thread does not hold the lock of the object.

22.12 (d)
Since the two methods emptying() and filling() are synchronized, only one oper-
ation at a time can take place on the tank that is a shared resource between the two
threads.
The method emptying() waits to empty the tank if it is already empty (i.e., isEmpty
is true). When the tank becomes full (i.e., isEmpty becomes false), it empties the
tank and sets the condition that the tank is empty (i.e., isEmpty is true).
The method filling() waits to fill the tank if it is already full (i.e., isEmpty is false).
When the tank becomes empty (i.e., isEmpty becomes true), it fills the tank and sets
the condition that the tank is full (i.e., isEmpty is false).
Since the tank is empty to start with (i.e., isEmpty is true), it will be filled first. Once
started, the program will continue to print the string "filling" followed by the
string "emptying".
Note that the while loop in the pause() method must always check against the field
isEmpty.

23 Concurrency: Part II

23.1 (c)
A single thread executor service does not allow scheduling of tasks, but a sched-
uled executor service allows a task to be scheduled with a specified delay, and also
allows a task to be executed periodically. The work stealing mechanism is specific
to the work stealing thread pool, and the work stealing thread pool is designed to
maintain enough threads to support a given level of parallelism.

23.2 (b)
The shutdown() method of the executor service initiates the shutdown of the exec-
utor service, allowing currently running tasks to continue, but preventing new
tasks from being submitted. It does not wait for the termination of currently run-
ning tasks. The awaitTermination() method can throw an InterruptedException.
The shutdownNow() method also initiates the shutdown of the executor service, but
it cancels all running tasks and returns.

23.3 (b)
The read lock does not prevent other operations from reading data. Methods that
acquire read and write locks can throw an InterruptedException. The write lock is
designed to allow only a single exclusive write operation on the data, preventing
other read and write operations to be performed, thus preserving memory consis-
tency and preventing data corruption.

1740 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1740 Friday, December 2, 2022 4:23 PM
23.4 (b)
The contents of list1 are created by spawning a number of threads, concurrently
writing data to the copy-on-write list. There is no guarantee that these threads
would actually complete copying all elements from the initial list by the time list1
is printed.
The contents of list2 are created by processing elements from the initial list using
a parallel stream with a list collector reduction operation combining processed
data into a single list. The collect() terminal operation ensures that the stream is
exhausted and the collector ensures that all data is assembled into the list. When
printed, list2 has the same contents as the initial list.
The contents of list3 are created by processing elements from the initial list using
a parallel stream, but manually adding elements into list3. This does not guaran-
tee the consistency of list3 because of potential contention between threads trying
to access list3, and is likely to corrupt data.

23.5 (d)
Synchronized collections provide blocking (synchronized) methods that modify
collection content. However, synchronized collections do not provide a synchro-
nized iterator. It is the programmer’s responsibility to implement synchronized
iteration behavior for such collections.
Copy-on-write collections achieve concurrency by creating a copy of a collection
for each thread that tries to modify the collection, and then automatically merging
these copies without any need to implement thread synchronization.
Immutable collections are read only, and thus are automatically considered to be
memory safe, without any need for synchronization.

23.6 (d)
Atomic variables are designed to be thread-safe without the use of synchronization
and intrinsic locking. Methods provided for atomic variables do not throw an
InterruptedException.

23.7 (a) and (b)
The Atomic API provides operations that guarantee object consistency. However,
no specific order is enforced when a number of atomic operations are performed
concurrently. In this example, a number of incrementAndGet() calls are executed on
an AtomicLong object, resulting in the consistent increment of its value. This means
that the last value in this example would always be 3. The order of the Future
objects is the same as that of the invoked tasks, but the stream iterating through the
list of these Future objects can print the numbers 1, 2, and 3 in any order, as the
order of the concurrent increment operations is unpredictable.

23.8 (a)
In this example, an attempt is made to upgrade a read lock to a write lock, which
is not possible. It should be noted that a write lock can be downgraded to a read
lock. Consider the following scenarios:

 23 CONCURRENCY: PART II 1741

JSE17_OCP.book Page 1741 Friday, December 2, 2022 4:23 PM
Attempting to obtain the read lock using the lock() method after the write lock has
been acquired is allowed:

writeLock.lock();
readLock.lock();

Attempting to obtain a write lock using the lock() method after the read lock has
been acquired will not succeed:

readLock.lock();
writeLock.lock();

Attempting to obtain a write lock using the tryLock() method after the read lock
has been acquired will return false—that is, the write lock is not acquired:

readLock.lock();
writeLock.tryLock();

In the finally block, the isWriteLocked() method checks whether the write lock has
been acquired, but we have already established that this would not be the case. So
only the "Read lock acquired" and "The end" messages will be printed in this sce-
nario.

23.9 (d)
In this example, the variable counter is declared as volatile. A volatile variable
guarantees visibility of write operations. It does not guarantee memory consis-
tency when several concurrent threads attempt to modify this volatile variable
with a non-atomic operation (--). There is a danger of interleaving of read and
write operations on the variable by different threads; thus the results are unpre-
dictable.

23.10 (e)
The submit() method does not throw an exception. It is possible to submit both a
Callable (() -> "acme") that returns a value and a Runnable (() -> {}) that does not.
The shutdown() method does not throw an exception. An invocation of the shut-
down() method initiates the shutdown of the executor service, but the two already
submitted tasks are allowed to complete. However, the shutdown() method does
not wait for the tasks to complete execution.
Although the get() method can throw checked exceptions, no exceptions are
thrown in this case. Invocation of the get() method on a Future blocks until the task
represented by the Future completes execution. The first get() method call returns
the result of executing the Callable, which in this case returns the string "acme".
Since a Runnable does not return a value, the second get() method call returns the
null value to indicate normal completion of the task represented by the Runnable.
The print statement does not throw an exception. It prints "acme null", which is the
concatenation of the results "acme" and the null value returned by the get() meth-
ods, respectively.

23.11 (f) and (h)
In the for(;;) loop, there is no guarantee that a task will actually be cancelled
before it completes. Cancelled or not, each task is added to the results list. The

1742 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1742 Friday, December 2, 2022 4:23 PM
shutdown() method initiates the shutdown of the executor service, allowing those
tasks that are already running to complete execution.
The method isDone() only returns true if the task completed due to normal termi-
nation, an exception, or cancellation. If any task was still running, the allMatch(r-
>r.isDone()) expression will return false, causing the letter Z to be printed.
If all tasks completed, then there could be some among them that were cancelled.
An attempt to get the value of a Future whose task has been cancelled will result in
an exception. In order to concatenate the values returned by the tasks in the Future
objects, all cancelled tasks are filtered from the stream by calling the isCancelled()
method. Since it is unpredictable which tasks were cancelled and which termi-
nated normally, the output from the program may contain any of the letters A, B, C,
D, or E.

24 Database Connectivity

24.1 (c)
When no rows are returned by the query, invoking the next() method simply
returns false to indicate the absence of the next row in the result set. This is con-
sidered normal behavior and does not cause an exception, ruling out (a) and (b).
The first row in the result set has index 1.

24.2 (c)
Programmers should ensure that result sets are closed first, then statements, and
only then the connection. The closure order is important because unclosed result
sets and statements can cause a memory leak on the database side. This has noth-
ing to do with the transactional behavior of the program, and thus is not related to
auto-commit mode.

24.3 (b)
In this code example, the marker parameter in the select statement is set to match
rows that start with the string "Where". The table contains exactly two rows that
match the where clause, so these rows will be retrieved and printed by the pro-
gram. When retrieving a column value, the column might not have a value—that
is, it might be null. Testing a reference for null before using the reference avoids
the NullPointerException at (3).

24.4 (b)
Notice that in this code example, the value 103 that is set for the id column in the
query does not match any id in the rows in the table. Therefore, when executed,
this query will not return any rows. This is not an error, so it would not cause any
exceptions. Instead, the method next() will return false, as the result set is empty.
As a result, the body of the if statement will not be executed and nothing will be
printed.

 24 DATABASE CONNECTIVITY 1743

JSE17_OCP.book Page 1743 Friday, December 2, 2022 4:23 PM
24.5 (b)
First note that the auto-commit mode has been disabled for the connection. Next,
this program sets the marker parameters and executes an update statement. How-
ever, when it sets the marker parameter for the select statement, it uses index 2, but
there is only one marker parameter in this select statement, so the line of code
ps1.setInt(2, id) will throw an exception. This will interrupt normal program
execution and control will be transferred directly to the catch block. This means
that the explicit commit statement will not be executed.
However, the catch block does not attempt to roll back this transaction, so once the
exception is handled by the catch block, the program will resume its normal exe-
cution, which will correctly close the statements and the connection in the implicit
finally block of the outer try-with-resources statement. Therefore, the database
will not have any indication that it is supposed to perform a rollback, as no rollback
is executed in the catch block. Its reaction to a normal connection closure is to com-
mit any outstanding changes.

24.6 (b)
The resources will be closed in the following order: result set, statement, and con-
nection.

24.7 (b)
Marker parameters in a prepared statement are set with the setXXX() methods, not
with the executeQuery() method, which rules out (a). Each prepared statement rep-
resents a single SQL statement, which can be parameterized and executed multiple
times, contradicts (c) and (d).

24.8 (a) and (b)
The SQL query in this example selects rows from the questions table, using a where
clause that selects rows that do not have any value (null) for the answer column.
Then the code iterates through the result set containing these rows and updates the
answer column value to be "no answer".
(c) is incorrect because the SELECT statement will return some, but not necessarily
all, rows from the questions table. (d) is incorrect because potential exceptions will
be caught by the catch block, which does not invoke the rollback() method. There-
fore, once an exception is caught, the program will resume normal execution and
will correctly close the connection in the implicitly finally block of the outer try-
with-resources statement. Databases assume that if a program has correctly closed
its JDBC connection, then there is no reason not to commit any outstanding
changes made within the context of this connection.

24.9 (c)
There are two problems with the code.
First, only one of the marker parameters is actually set before the statement is exe-
cuted.
And second, an update SQL operation cannot be executed using the execute-
Query() method.

1744 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1744 Friday, December 2, 2022 4:23 PM
Either one of these issues would cause the executeQuery() method to throw an
exception.

24.10 (a)
Marker parameters in a prepared statement need not be set in any specific order,
as long as they are all set before the statement is executed. In the given code, all
marker parameters are set before the statement is executed, so the code executes
normally.

24.11 (b), (c), and (d)
A prepared statement can be executed multiple times, making (b) a correct option.
If a statement is a SELECT statement, then it can be executed using either the exe-
cute() or executeQuery() methods; otherwise, it can be executed using the exe-
cute() and executeUpdate() methods, making (c) and (d) correct options.
Statements executed by the executeQuery() method and the executeUpdate()
method are mutually exclusive—the former executes SELECT statements and the
latter non-SELECT statements like INSERT, UPDATE, and DELETE. The execute() method
can execute all statements.

24.12 (a)
The default navigation direction in a result set is forward only, meaning starting
with the first row and successively proceeding to the last row each time the next()
method is called. Forward-only navigation is supported by all databases. Other
result set options, such as reflection of changes, scroll sensitivity, and cursor clo-
sure on commit, may or may not be supported by different databases.

24.13 (a)
The relative(int rows) method moves the cursor a specified number of rows in
relation to the current row in the result set. The parameter value can be a positive
or a negative int value.
Calling the method relative(1) moves the cursor forward by one row, which is the
same as calling the method next().
Calling the method relative(0) does not move the cursor from its current position.
Calling the method relative(-1) moves the cursor backward by one row, which is
the same as calling the method previous().
Calling the method absolute(1) moves the cursor to the first row in the result set,
which is the same as calling the method first().
Calling the method absolute(0) moves the cursor to before the first row in the
result set.
Calling the method absolute(-1) moves the cursor to the last row in the result set,
which is the same as calling the method last().

 25 ANNOTATIONS 1745

JSE17_OCP.book Page 1745 Friday, December 2, 2022 4:23 PM
25 Annotations

25.1 (a) and (b)
Annotations are compiled into classes just like any other classes or interfaces. The
purpose of an annotation is to provide metadata for program elements in the code
(like Java classes, interfaces, methods, and variables). Annotations can be applied
to other annotations, and can also be used as a type of an annotation element.

25.2 (c)
Annotations having the target ElementType.TYPE can be applied to classes, inter-
faces, enums, and other annotations. Annotations having the target Element-
Type.TYPE_PARAMETER can be applied to type parameters in generic code.
Annotations having the target ElementType.FIELD can be applied to constants, as
constants are static fields. Annotations having the target ElementType.METHOD can be
applied to only methods, but annotations having the target ElementType.CONSTRUC-
TOR can be applied to constructors.

25.3 (a) and (c)
The annotation in question is applied to the class, and requires no parameters to be
supplied. This means that its target must be either default, or explicitly declared to
be applicable to ElementType.TYPE. This would exclude (b) and (d).

25.4 (b) and (g)
The annotation type declaration defines a single element type of int array called
value, and provides a default value for this element. This question asks to identify
incorrect ways of applying this annotation. (a) and (f) supply a single value for this
annotation element, in which case no {} are required to enclose the value, and it is
not required to specify the element name value when only one value is specified.
(c) is legal because the element name value does not have to be specified when it is
the only element specified in the annotation type declaration. (d) and (e) are legal
because the value element does not have to be set, since it has a default value, and
parentheses () are optional when no value is specified. (b) and (g) are illegal
because they are missing the block notation {} to enclose the list of values speci-
fied.

25.5 (b)
The annotation type Test5Annotation should be defined to be applicable to at least
the targets of TYPE, TYPE_PARAMETER, and FIELD. It should also define an element
named value (and not values), whose type should be a String array and have a
default value.

25.6 (d)
Annotations are not reflected in the documentation of the class in which they are
applied, unless the @Documented meta-annotation is applied to its annotation type.

25.7 (b) and (e)
Default values are not mandatory for annotation type elements, and a default
value cannot be null. An annotation element of an array type can be assigned a sin-

1746 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1746 Friday, December 2, 2022 4:23 PM
gle default value, in which case it does not need to be enclosed in block notation
{}. Annotation element names must be specified as method names with no param-
eters, but mandatory parentheses ().

25.8 (a), (b), and (c)
The annotation type can be applied to Java types—that is, classes, enums, and
interfaces. It can also be applied to fields and constructors.
(a) applies annotation to an interface, which is valid because it is defined as appli-
cable to a type. It provides a string value for the value() element, and it does not
set any other elements, relying instead on their default values. This means it does
not have to explicitly qualify the element value() name.
(b) applies annotation to enum fields, which is allowed by this annotation defini-
tion. It provides both value() and details() element values for the first three fields,
and relies on the default value of the details() element for the fourth field.
(c) applies the annotation to a field, explicitly qualifying the element value and
relying on the default value of the details() element.
(d) applies annotation to a class, which is allowed by this annotation type. How-
ever, it does not qualify the name of the value() element, which must be qualified
when it is not the only element specified.
(e) applies annotation to a method, which is not allowed by this annotation type.
(f) applies annotation to an expression (i.e., in a type context), which is not allowed
by this annotation type.

25.9 (b)
The Containee annotation type is defined as a repeatable annotation type. Thus it
can be used as an array type of the mandatory value() element declared in the Con-
tainer annotation type. However, in order for this construct to work, any other ele-
ments specified in the Container annotation type must be declared with default
values.

25.10 (c)
The way in which the annotation @Folder is applied to the Storage class requires the
Folder annotation type to be repeatable—that is, its type declaration must be
marked with the @Repeatable meta-annotation having the argument Folders.class.
Because of the way the @Folder annotation is applied to the Storage class, its type
declaration must define two elements: a value() element and a temp() element. The
temp() element of the Folder annotation type must be defined with a default value.
The container annotation type Folders must define a value() element of type
Folder[].

26 Secure Coding

26.1 (c)
Data obfuscation is considered to be an important measure for securing sensitive
information. Sanitizing input values is a countermeasure that helps preventing

 26 SECURE CODING 1747

JSE17_OCP.book Page 1747 Friday, December 2, 2022 4:23 PM
code injections. Encapsulation helps to prevent code corruption. Terminating
recursive data references helps to prevent a type of denial-of-service attack that
attempts to cause a program to start an infinite data processing loop.

26.2 (d)
Encapsulation is a software design strategy that only allows access to an object’s
state through specifically defined operations. Mutable objects are those whose
state can be modified. Code corruption is a category of threats that can be used to
corrupt application logic. A code injection allows executable code to be passed as
an input parameter.

26.3 (d)
Normally an addition of 1 to a maximum value of a primitive type would result in
the value wrapping around to the minimum value. The maximum value of the int
type is 2147483647 and the minimum value is -2147483648. However, in this case,
the addition is performed by the addExact() method, which actually checks value
boundaries and will throw an ArithmeticException to prevent the value wrapping
around.

26.4 (c)
The Secure Hash Algorithm (SHA) is designed to produce a fixed-length result,
known as a message digest, from a variable-length input. The number 256 is the
length of the digest—that is, the result produced by the hash algorithm.

26.5 (a)
Java security policies are specified as a grant, defining restrictions and permissions
on code execution and on access to resources.

26.6 (c)
Any checked exceptions thrown within the PrivilegedAction.run() method must
be handled within this method. Alternatively, if checked exceptions need to be
propagated outside the run() method, then the PrivilegedExceptionAction inter-
face should be implemented instead.

1748 APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

JSE17_OCP.book Page 1748 Friday, December 2, 2022 4:23 PM

	Annotated Answers to Review Questions
	1 Basics of Java Programming
	2 Basic Elements, Primitive Data Types, and Operators
	3 Declarations
	4 Control Flow
	5 Object-Oriented Programming
	6 Access Control
	7 Exception Handling
	8 Selected API Classes
	9 Nested Type Declarations
	10 Object Lifetime
	11 Generics
	12 Collections, Part I: ArrayList<E>
	13 Functional-Style Programming
	14 Object Comparison
	15 Collections: Part II
	16 Streams
	17 Date and Time
	18 Localization
	19 Java Module System
	20 Java I/O: Part I
	21 Java I/O: Part II
	22 Concurrency: Part I
	23 Concurrency: Part II
	24 Database Connectivity
	25 Annotations
	26 Secure Coding

