Basics of Java Programming

Chapter Topics

* Factors and features of the Java ecosystem that have contributed to
its evolution and success

* Basic terminology and concepts in Java, and how the language
supports object-oriented programming (OOP)

® Understand the distinction between a class and an object

* Basics of how to create objects, access their fields and call methods
on them

¢ Essential elements of a Java program

¢ Compiling and running Java programs

¢ Executing single-file source-code programs

e Brief introduction to the Java Shell tool (jshel1)

¢ Formatting and printing values to the terminal window

[3.2] Create classes and records, and define and use instance and | §1.2,p. 7

static fields and methods, constructors, and instance and §1.3,p.9
static initializers §1.4,p.10
O Basic terminology for declaring and using classes and class §1.5,p. 11

members is introduced in this chapter.

o For details on classes, fields, methods, and constructors, see
Chapter 3, p. 97.

o For record classes, see §5.14, p. 305.
o For instance and static initializers, see §10.5, p. 554.

CHAPTER 1: BASICS OF JAVA PROGRAMMING

[3.2] Define and use fields and methods, including instance, static | §1.2, p. 7

and overloaded methods §1.3,p.9
O Basic terminology for declaring and using classes and class §1.4,p. 10
members is introduced in this chapter. §1.5,p. 11

o For details on classes, fields, methods, and constructors, see
Chapter 3, p. 97.

1.1: THE JAVA ECOSYSTEM 3

1.1

Before embarking on the road to Java certification, it is important to understand
the basic terminology and concepts in Java. No particular exam objective is cov-
ered in this chapter. The emphasis is on providing an introduction to Java and core
concepts in object-oriented programming (OOP). In-depth coverage of the con-
cepts introduced will follow in due course in subsequent chapters.

The basic elements of a Java program are introduced in this chapter. The old adage
that practice makes perfect is certainly true when learning a programming langu-
age. We highly encourage programming on the computer. The mechanics of com-
piling and running a Java program are provided in this chapter. We begin with an
overview of factors that make Java the platform of choice for enterprises and devel-
opers.

The Java Ecosystem

Since its initial release as Java Development Kit 1.0 (JDK 1.0) in 1996, the name Java
has become synonymous with a thriving ecosystem that provides the components
and the tools necessary for developing systems for today’s multicore world. Its
diverse community, comprising a multitude of volunteers, organizations, and cor-
porations, continues to fuel its evolution and grow with its success. Many free and
open source technologies now exist that are well proven, mature, and supported,
making their adoption less daunting. These tools and frameworks provide support
for all phases of the software development lifecycle and beyond.

There are different Java platforms, each targeting different application domains:

e Java SE (Standard Edition): designed for developing desktop and server envi-
ronments

¢ Java EE, also known as Jakarta EE (Enterprise Edition): designed for develop-
ing enterprise applications

e Java ME (Micro Edition): designed for embedded systems, such as mobile
devices and set-top boxes

¢ Java Card: designed for tiny memory footprint devices, such as smart cards

Each platform provides a hardware/operating system-specific JVM and an API
(application programming interface) to develop applications for that platform. The
Java SE platform provides the core functionality of the language. The Java EE plat-
form is a superset of the Java SE platform and, as the most extensive of the three
platforms, targets enterprise application development. The Java ME platform is a
subset of the Java SE platform, having a small footprint, and is suitable for devel-
oping mobile and embedded applications. The Java Card platform allows devel-
opment of embedded applications that have a very tiny memory footprint,
targeting devices like smart cards. The upshot of this classification is that a Java
program developed for one Java platform will not necessarily run under the JVM
of another Java platform. The JVM must be compatible with the Java platform that
was used to develop the application.

CHAPTER 1: BASICS OF JAVA PROGRAMMING

The API and the tools for developing and running Java applications are bundled
together as the JDK. Starting with Java 11, JRE (Java Runtime Environment) is no
longer available as a stand-alone bundle providing runtime support for execution
of Java programs, but it continues to be a subset of the now modular JDK. As
before, one needs to install the JDK to both develop and run Java programs. How-
ever, to deploy Java programs, the JDK tool j1ink can be used to create a runtime
image that includes the program code and the necessary runtime support to run
the program—a topic that we will get to when we discuss modules.

We highly recommend installing the JDK for Java SE 17 depending on the hard-
ware and operating system. Although newer versions of Java are released period-
ically, Java SE 17 is readily available as an LTS (long-term support) release, and is the
subject of this book.

As of Java SE 17, Oracle is making the Oracle JDK available for free under the Ora-
cle No-Fee Terms and Conditions (NFTC) license. Although subject to the conditions,
it permits free use for all users.

Key Features of Java

The rest of this section summarizes some of the factors that have contributed to the
evolution of Java from an object-oriented programming language to a full-fledged
ecosystem for developing all sorts of systems, including large-scale business sys-
tems and embedded systems for portable computing devices. A lot of jargon is
used in this section and it might be difficult to understand at the first reading, so
we recommend coming back after working through the book to appreciate the fac-
tors that have contributed to the success of Java.

Multi-paradigm Programming

The Java programming language supports the object-oriented programming para-
digm, in which the properties of an object and its behavior are encapsulated in the
object. The properties and the behavior are represented by the fields and the meth-
ods of the object, respectively. The objects communicate through method calls in a
procedural manner—in other words, Java also incorporates the procedural program-
ming paradigm. Encapsulation ensures that objects are immune to tampering except
when manipulated through their public interface. Encapsulation exposes only
what an object does and not how it does it, so that its implementation can be
changed with minimal impact on its clients. The later sections in this chapter pro-
vide an overview of basic concepts of object-oriented programming, such as inher-
itance and aggregation, and subsequent chapters will expand on this topic.

Java has also evolved to support the functional-style programming paradigm with the
introduction of lambda expressions and their implementation using functional
interfaces. This topic will be thoroughly explored in this book.

Above all, object-oriented system development promotes code reuse where exist-
ing classes can be reused to implement new classes. Its module facility facilitates

1.1: THE JAVA ECOSYSTEM 5

implementation of large systems, allowing their decomposition into manageable
subsystems, as we will see when we discuss modules.

Bytecode Interpreted by the JVM

Java programs are compiled to bytecode that is interpreted by the JVM. Various
optimization technologies (e.g., just-in-time [JIT] delivery) have led to the JVM
becoming a lean and mean virtual machine with regard to performance, stability,
and security. Many other languages, such as Scala, Groovy, and Clojure, now com-
pile to bytecode and seamlessly execute on the JVM. The JVM has thus evolved
into an ecosystem in its own right.

Architecture-Neutral and Portable Bytecode

The often-cited slogan “Write once, run everywhere” is true only if a compatible
JVM is available for the hardware and software platform. In other words, to run
Java SE applications under Windows 10 on a 64-bit hardware architecture, the right
JVM must be installed. Fortunately, the JVM has been ported to run under most
platforms and operating systems that exist today, including hardware devices such
as smart cards, mobile devices, and home appliances.

The specification of the bytecode is architecture neutral, meaning it is independent
of any hardware architecture. It is executed by a readily available hardware and
operating system-specific JVM. The portability of the Java bytecode thus eases the
burden of cross-platform system development.

Simplicity

The language design of Java has been driven by a desire to simplify the program-
ming process. Although Java borrows heavily from the C++ programming langu-
age, certain features that were deemed problematic were not incorporated into its
design. For example, Java does not have a preprocessor, and it does not allow
pointer handling, user-defined operator overloading, or multiple class inheritance.

Java opted for automatic garbage collection, which frees the programmer from
dealing with many issues related to memory management, such as memory leaks.

However, the jury is still out on whether the syntax of nested classes or introduc-
tion of wild cards for generics can be considered simple.

The introduction of functional-style features has enhanced Java’s appeal, and the
potential of its module system is yet to be seen.
Dynamic and Distributed

The JVM can dynamically load class libraries from the local file system as well as
from machines on the network, when those libraries are needed at runtime. This
feature facilitates linking the code as and when necessary during the execution of

CHAPTER 1: BASICS OF JAVA PROGRAMMING

a program. It is also possible to programmatically query a class or an object at run-
time about its meta-information, such as its methods and fields.

Java provides extensive support for networking to build distributed systems,
where objects are able to communicate across networks using various communica-
tion protocols and technologies, such as Remote Method Invocation (RMI) and
socket connections.

Robust and Secure

Java promotes the development of reliable, robust, and secure systems. It is a
strong statically typed language: The compiler guarantees runtime execution if the
code compiles without errors. Runtime index checks for arrays and strings, auto-
matic garbage collection, and elimination of pointers are some of the features of
Java that promote reliability. The exception handling feature of Java is without a
doubt the main factor that facilitates the development of robust systems. And the
module system further enhances encapsulation and configuration.

Java provides multilevel protection from malicious code. The language does not
allow direct access to memory. A bytecode verifier determines whether any
untrusted code loaded in the JVM is safe. The sandbox model is used to confine
and execute any untrusted code, limiting the damage that such code can cause.
These features, among others, are provided by a comprehensive Java security
model to ensure that application code executes securely in the JVM.

High Performance and Multithreaded

The performance of Java programs has improved significantly with various opti-
mizations that are applied to the bytecode at runtime by the JVM. The JIT feature
monitors the program at runtime to identify performance-critical bytecode (called
hotspots) that can be optimized. Such code is usually translated to machine code to
boost performance. The performance achieved by the JVM is a balance between
native code execution and interpretation of fully scripted languages, which fortu-
nately is adequate for many applications.

Java has always provided high-level support for multithreading, allowing multiple
threads of execution to perform different tasks concurrently in an application. It
has risen to the new challenges that have emerged in recent years to harness the
increased computing power made available by multicore architectures. Functional
programming, in which computation is treated as side-effects-free evaluation of
functions, is seen as a boon to meet these challenges. Java brings elements of func-
tional-style programming into the language, providing language constructs
(lambda expressions and functional interfaces) and API support (through its Con-
current and Stream APIs) to efficiently utilize the many cores to process large
amounts of data in parallel.

1.2: CLASSES

1.2

Figure 1.1

Classes

One of the fundamental ways in which we handle complexity is by using abstrac-
tions. An abstraction denotes the essential properties and behaviors of an object
that differentiate it from other objects. The essence of OOP is modeling abstrac-
tions, using classes and objects. The hardest part of this endeavor is coming up
with the right abstractions.

A class denotes a category of objects, and acts as a blueprint for creating objects. A
class models an abstraction by defining the properties and behaviors of the objects
representing the abstraction. An object exhibits the properties and behaviors defined
by its class. The properties of an object of a class are also called attributes, and are
defined by fields in Java. A field in a class is a variable that can store a value that
represents a particular property of an object. The behaviors of an object of a class
are also known as operations, and are defined using methods in Java. Fields and
methods in a class declaration are collectively called members.

An important distinction is made between the contract and the implementation that
a class provides for its objects. The contract defines which services are provided,
and the implementation defines how these services are provided by the class. Clients
(i.e., other objects) need only know the contract of an object, and not its implemen-
tation, to avail themselves of the object’s services.

As an example, we will implement a class that models the abstraction of a point as
(x, y)-coordinates in a two-dimensional plane. The class Point2D will use two int
fields x and y to store the coordinates. Using simplified Unified Modeling Langu-
age (UML) notation, the class Point2D is graphically depicted in Figure 1.1, which
models the abstraction. Both fields, with their type and method names and their
return value type, are shown in Figure 1.1a.

UML Notation for Classes

Class name Point2D

x:int
Fields y:int

Point2D

getX():int
Methods getY():int
setX():void
setY():void
toString():String

(a) Expanded form (b) Abbreviated form

8 CHAPTER 1: BASICS OF JAVA PROGRAMMING

Declaring Members: Fields and Methods

Example 1.1 shows the declaration of the class Point2D depicted in Figure 1.1. Its
intention is to illustrate the salient features of a class declaration in Java, rather
than an industrial-strength implementation. We will come back to the nitty-gritty
of the Java syntax in subsequent chapters.

In Example 1.1, the character sequence // in the code indicates the start of a single-
line comment that can be used to document the code. All characters after this
sequence and to the end of the line are ignored by the compiler.

A class declaration can contain member declarations that define the fields and the
methods of the objects the class represents. In the case of the class Point2D, it has the
following two fields declared at (1):

* x, which is the x-coordinate of a point

¢ y, which is the y-coordinate of a point

The class Point2D has five methods, declared at (3), that implement the essential
operations provided by a point:

¢ getX() returns the x-coordinate of the point.

* getY() returns the y-coordinate of the point.

* setX() sets the x-coordinate to the value passed to the method.

* setY() sets the y-coordinate to the value passed to the method.

® toString() returns a string with the coordinate values formatted as " (x,y)".
The class declaration also has a method-like declaration at (2) with the same name
as the class. Such declarations are called constructors. As we shall see, a constructor

is executed when an object is created from the class. However, the implementation
details in the example are not important for the present discussion.

Example 1.1 Basic Elements of a Class Declaration

// File: Point2D.java
public class Point2D { // Class name
// Class Member Declarations

// Fields: @
private int x; // The x-coordinate
private int y; // The y-coordinate

// Constructor: (@)
public Point2D(int xCoord, int yCoord) {

x = xCoord;

y = yCoord;
}

// Methods: 3
public int getX(Q) { return x; }
public int getY(Q) { return y; }

1.3: OBJECTS

1.3

public void setX(int xCoord) { x = xCoord; }

public void setY(int yCoord) { y = yCoord; }

pubTic String toString() { return "(" + x + "," +y + ")"; } // Format: (x,y)
}

Objects

Class Instantiation, Reference Values, and References

The process of creating objects from a class is called instantiation. An object is an
instance of a class. The object is constructed using the class as a blueprint and is
a concrete instance of the abstraction that the class represents. An object must be
created before it can be used in a program.

A reference value is returned when an object is created. A reference value uniquely
denotes a particular object. A variable denotes a location in memory where a value
can be stored. An object reference (or simply reference) is a variable that can store a
reference value. Thus a reference provides a handle to an object, as it can indirectly
denote an object whose reference value it holds. In Java, an object can only be
manipulated by a reference that holds its reference value. Direct access to the ref-
erence value is not permitted.

This setup for manipulating objects requires that a reference be declared, a class be
instantiated to create an object, and the reference value of the object created be
stored in the reference. These steps are accomplished by a declaration statement:

Point2D pl = new Point2D(10, 20); // A point with coordinates (10,20)

In the preceding declaration statement, the left-hand side of the assignment operator
(=) declares that pl is a reference of class Point2D. The reference pl, therefore, can
refer to objects of class Point2D.

The right-hand side of the assignment operator creates an object of class Point2D.
This step involves using the new operator in conjunction with a call to a constructor
of the class (new Point2D(10, 20)). The new operator creates an instance of the Point2D
class and returns the reference value of this instance. The arguments passed in the
constructor call are used to initialize the x and the y fields, respectively. The assign-
ment operator stores the reference value in the reference pl declared on the left-
hand side of the assignment operator. The reference p1 can now be used to manip-
ulate the object whose reference value it holds.

Analogously, the following declaration statement declares the reference p2 to be of
class Point2D, creates an object of class Point2D, and assigns its reference value to the
reference p2:

Point2D p2 = new Point2D(5, 15); // A point with coordinates (5,15)

Each object that is created has its own copy of the fields declared in the class dec-
laration. That is, the two point objects, referenced by pl and p2, will have their own

10

CHAPTER 1: BASICS OF JAVA PROGRAMMING

x and y fields. The fields of an object are also called instance variables. The values of
the instance variables in an object constitute its state. Two distinct objects can have
the same state if their instance variables have the same values.

The purpose of the constructor call on the right-hand side of the new operator is
to initialize the fields of the newly created object. In this particular case, for each
new Point2D object created using the new operator, the constructor at (2) in Example
1.1 creates the x and y fields and initializes them with the arguments passed.

Figure 1.2 shows the UML notation for objects. The graphical representation of an
object is very similar to that of a class. Figure 1.2 shows the canonical notation,
where the name of the reference denoting the object is prefixed to the class name
with a colon (:). If the name of the reference is omitted, as in Figure 1.2b, this
denotes an anonymous object. Since objects in Java do not have names, but rather
are denoted by references, a more elaborate notation is shown in Figure 1.2c, where
references of the Point2D class explicitly refer to Point2D objects. In most cases, the
more compact notation will suffice.

Figure 1.2 UML Notation for Objects

1.4

pl:Point2D p2:Point2D

(a) Standard notation for objects

:Point2D

(b) Anonymous object

pl:Ref(Point2D) :Point2D

p2:Ref(Point2D) :Point2D

(c) Explicit references for Java objects

Instance Members

The methods of an object define its behavior; such methods are called instance
methods. It is important to note that these methods pertain to each object of the
class. In contrast to the instance variables, the implementation of the methods is
shared by all instances of the class. Instance variables and instance methods, which
belong to objects, are collectively called instance members, to distinguish them from
static members (p. 11), which only belong to the class.

1.5: STATIC MEMBERS 11

1.5

Invoking Methods

Objects communicate by calling methods on each other. As a consequence, an
object can be made to exhibit a particular behavior by calling the appropriate
method on the object. This is achieved by a method call whose basic form is the fol-
lowing: a reference that refers to the object, the binary dot (.) operator, and the
name of method to be invoked, together with a list of any arguments required by
the method.

reference.methodName (listOfArguments)

The method invoked on the object can also return results back to its caller, via a sin-
gle return value. The method called must be one that is defined for the object; oth-
erwise, the compiler reports an error.

Point2D point = new Point2D(-1, -4); // Creates a point with coordinates (-1,-4)

point.setX(-2); // (1) The x field is set to the value -2
int yCoord = point.getY(); // (2) Returns the value -4 of the y field
System.out.printin(point.toString(); // (3) Prints: (-2,-4)
point.distanceFromOrigin(); // (4) Compile-time error: No such method.

The sample code above invokes methods on the object denoted by the reference
point. The method call at (1) sets the value of the x field of point, and the method
call at (2) returns the value of the y field of point. At (3), the call to the toString()
method returns the string "(-2,-4)" which is printed. The setX(), getY(), and
toString() methods are all defined in the class Point2D. The setX() method does not
return any value, but the getY() and toString() methods do. Trying to invoke a
method named distanceFromOrigin() at (4) on point results in a compile-time error,
as no such method is defined in the class Point2D.

The dot (.) notation can also be used with a reference to access the fields of an
object. The basic form for field access is as follows:

reference . fieldName

Use of the dot notation is governed by the accessibility of the member. The methods
of the Point2D class are public and can thus be called by the clients of the class.
However, the fields in the class Point2D have private access, indicating that they are
not accessible from outside the class. Thus the code below at (1) in a client of the
Point2D class will not compile. Typically, a class provides public methods to access
values in its private fields, as class Point2D does.

System.out.printin(point.x); // (1) Compile-time error: x is not accessible.
System.out.printin(point.getX()); // OK.

Static Members

In some cases, certain members should belong only to the class; that is, they should
not be part of any instance of the class. Such members are called static members. Fields

12

Figure 1.3

CHAPTER 1: BASICS OF JAVA PROGRAMMING

and methods that are static members are easily distinguishable in a class declaration as
they must always be declared with the keyword static.

Figure 1.3 shows the class diagram for the class Point2D. It has been augmented by
three static members, whose names are underlined to distinguish them from
instance members. The augmented declaration of the Point2D class is given in
Example 1.2.

Class Diagram Showing Static Members of a Class

Point2D

x:int
yrint
info:String

getX():int
getY():int
setX():void
setY():void
toString():String
distance():double
showInfo():void

In Example 1.2, the field info at (1) is declared as a static variable. This field has
information about the purpose of the class that the class can share with its clients.
A static variable belongs to the class, rather than to any specific object of the class.
It will be allocated in the class and initialized to the string specified in its declara-
tion when the class is loaded. Declaring the info field as static makes sense, as it
is unnecessary that every object of the class Point2D should have a copy of this
information.

private static String info = "A point represented by (x,y)-coordinates.";

In Example 1.2, the two methods distance() and showInfo() at (5) are static methods
belonging to the class. Both are declared with the keyword static. The static
method distance() calculates and returns the distance between two points passed
as arguments to the method. The static method showInfo() prints the string with the
information referenced by the static variable info. These methods belong to the
class, rather than to any specific objects of the class.

Clients can access static members in the class by using the class name. The follow-
ing code invokes the static method distance() in the class Point2D:

double d = Point2D.distance(pl, p2); // Class name to invoke static method

Static members can also be accessed via object references, although doing so is not
encouraged:

pl.showInfo(Q); // Reference invokes static method

1.5: STATIC MEMBERS 13

Static members in a class can be accessed both by the class name and via object ref-
erences, but instance members can be accessed only by object references.

Example 1.2 Static Members in Class Declaration

// File: Point2D.java
pubTlic class Point2D { // Class name
// Class Member Declarations

// Static variable: (@D)]
private static String info = "A 2D point represented by (x,y)-coordinates.";

// Instance variables:)
private int x;
private int y;

// Constructor: 3
pubTic Point2D(int xCoord, int yCoord) {

x = xCoord;

y = yCoord;
}

// Instance methods: (©)]
public int getX() { return x; }

public int getY(Q) { return y; }

pubTic void setX(int xCoord) { x = xCoord; }

public void setY(int yCoord) { y = yCoord; }

public String toString() { return "(" + x + "," +y + "™"; } // Format: (x,y)

// Static methods: (5)
pubTlic static double distance(Point2D pl, Point2D p2) {
int xDiff = pl.x - p2.x;
int yDiff = pl.y - p2.y;
return Math.sqrt(xDiff*xDiff + yDiff*yDiff);
}
pubTlic static void showInfo() { System.out.println(info); }

Figure 1.4 shows the classification of the members in the class Point2D, using the
terminology we have introduced so far. Table 1.1 provides a summary of the termi-
nology used in defining members of a class.

14 CHAPTER 1: BASICS OF JAVA PROGRAMMING

Figure 1.4 Members of a Class

Class name Point2D

Instance members belong to objects Static members belong to the class
Instance variables Static variables
Properties X info Fields
y
— Members
Instance methods Static methods
getX() distance() Methods
Behaviors getYQ showInfo()
setX() —_—
setY()
toString()
]
Objects Class

Table 1.1 Terminology for Class Members

Instance members ~ The instance variables and instance methods of an object. They
can be accessed or invoked only through an object reference.

Instance variable A field that is allocated when the class is instantiated (i.e., when
an object of the class is created). Also called a non-static field or
just a field when the context is obvious.

Instance method A method that belongs to an instance of the class. Objects of the
same class share its implementation.

Static members The static variables and static methods of a class. They can be
accessed or invoked either by using the class name or through an
object reference.

Static variable A field that is allocated when the class is loaded. It belongs to the
class, and not to any specific object of the class. Also called a
static field or a class variable.

Static method A method that belongs to the class, and not to any object of the
class. Also called a class method.

1.6: INHERITANCE 15

1.6

Inheritance

There are two fundamental mechanisms for building new classes from existing
ones: inheritance and aggregation (p. 17). It makes sense to inherit from an existing
class Vehicle to define a class Car, since a car is a vehicle. The class Vehicle has sev-
eral parts; therefore, it makes sense to define a composite object of the class Vehicle
that has constituent objects of such classes as Engine, Ax1e, and GearBox, which make
up a vehicle.

Inheritance is illustrated here by an example that implements a point in three-dimen-
sional space—that is, a 3D point represented by (x, y, z)-coordinates. We can derive the
3D point from the Point2D class. This 3D point will have all the properties and behav-
iors of the Point2D class, along with the additional third dimension. This relationship
is shown in Figure 1.5 and implemented in Example 1.3. The class Point3D is called the
subclass, and the class Point2D is called the superclass. The Point2D class is a generaliza-
tion for points, whereas the class Point3D is a specialization of points that have three
coordinates.

Figure 1.5 Class Diagram Depicting Inheritance Relationship

Point2D

x:int
y:int
info:String

Superclass getX():int Generalization
getY():int
setX():void
setY():void
toString():String

distance():double
showInfo() Point2D
Point3D Point3D
;:1nt)
Subclass info:String Specialization
getZ():int

setZ():void
toString():String
distance() :double
showInfo():void

(a) Expanded form (b) Abbreviated form

16

CHAPTER 1: BASICS OF JAVA PROGRAMMING

In Java, deriving a new class from an existing class requires the use of the extends
clause in the subclass declaration. A subclass can extend only one superclass. The
subclass Point3D extends the Point2D class, shown at (1).

public class Point3D extends Point2D { // (1) Uses extends clause
/] ...
}

The Point3D class only declares the z-coordinate at (3), as every object of the sub-
class will have the x and y fields that are specified in its superclass Point2D. Note
that these fields are declared private in the superclass Point2D, but they are acces-
sible to a Point3D object indirectly through the public get and set methods for the x-
and the y-coordinates in the superclass Point2D. These methods are inherited by the
Point3D class.

The constructor of the Point3D class at (4) takes three arguments corresponding to
the x-, y-, and z-coordinates. The call to super() at (5) results in the constructor of
the superclass Point2D being called to initialize the x- and y-coordinates.

It addition, the Point3D class declares methods at (6) to get and set the z-coordinate.
It provides its own version of the toString() method to format a point that has
three coordinates.

Since calculating the distance is also different in three-dimensional space from that
in a two-dimensional plane, the Point3D class provides its own distance() static
method at (7). As its objects represent 3D points, it declares its own static field info
and provides its own static method showInfo() to print this information.

Example 1.3 Defining a Subclass

// File: Point2D.java
pubTlic class Point2D {
// Same as in Example 1.2.

}

// File: Point3D.java

public class Point3D extends Point2D { // (1) Uses extends clause
// Static variable: @

private static String info = "A 3D point represented by (x,y,z)-coordinates.";

// Instance variable: 3)
private int z;

// Constructor: 4
pubTic Point3D(int xCoord, int yCoord, int zCoord) {
super(xCoord, yCoord); // (5)
z = zCoord;
}
// Instance methods: (6)

public int getZ() { return z; }

1.7: AGGREGATION 17

1.7

pubTlic void setZ(int zCoord) { z = zCoord; }
@verride
public String toString({
return "(" + getXQ) + "," + getYQ + "," + z + ")"; // Format: (x,y,z)
}

// Static methods: @)
public static double distance(Point3D pl, Point3D p2) {

int xDiff = pl.getX() - p2.getX(Q;

int yDiff = pl.getY() - p2.getY(Q;

int zDiff = pl.getZ() - p2.getZQ);

return Math.sqrt(xDiff*xDiff + yDiff*yDiff + zDiff*zDiff);

}
public static void showInfo() { System.out.printin(info); }

Objects of the Point3D class will respond just like objects of the Point2D class, but
they also have the additional functionality defined in the subclass. References of
the class Point3D are used in the code below. The comments indicate in which class
a method is invoked. Note that the subclass reference can invoke the inherited get
and set methods in the superclass.

Point3D p3A = new Point3D(10, 20, 30);

System.out.printin(p3A.toString()); // (10,20,30) (Point3D)
System.out.printin("x: " + p3A.getX()); // x: 10 (Point2D)
System.out.printin("y: " + p3A.getY()); // y: 20 (Point2D)
System.out.printin("z: " + p3A.getZ()); // z: 30 (Point3D)
p3A.setX(-10); p3A.setY(-20); p3A.setZ(-30);

System.out.printin(p3A.toString()); // (-10,-20,-30) (Point3D)

Point3D p3B = new Point3D(30, 20, 10);

System.out.printin(p3B.toString()); // (30,20,10) (Point3D)
System.out.printIn(Point3D.distance(p3A, p3B)); // 69.2820323027551 (Point3D)
Point3D.showInfo(); // A 3D point represented by (x,y,z)-coordinates. (Point3D)

Aggregation

An association defines a static relationship between objects of two classes. One such
association, called aggregation (also known as composition), expresses how an object
uses other objects. Java supports aggregation of objects by reference, since objects
cannot contain other objects explicitly. The aggregate object usually has fields that
denote its constituent objects. By default, Java uses aggregation when fields denot-
ing objects are declared in a class declaration. Typically, an aggregate object dele-
gates its tasks to its constituent objects.

We illustrate aggregation by implementing a finite-length straight line that has two
end points in a two-dimensional plane. We would like to use the class Point2D to
implement such a line. A class Line could be implemented by having fields for two
Point2D objects that would represent the end points of a line. This aggregate rela-

18 CHAPTER 1: BASICS OF JAVA PROGRAMMING

tionship is depicted in Figure 1.6, which shows that a Line object has two Point2D
objects, indicated by the diamond notation. The complete declaration of the Line
class is shown in Example 1.4. The two fields endPointl and endPoint2 declared at
(1) represent the two end points. In particular, note the Tength() method at (2)
which delegates the computation of the length to the Point2D.distance() method.

The following code shows how a Line object can be manipulated:

Line Tinel = new Line(new Point2D(5,6), new Point2D(7,8));
System.out.printin(linel.toString()); // Line[(5,6),(7,8)]
Tinel.setEndPointl(new Point2D(11, 12));

Tinel.setEndPoint2(new Point2D(13, 14));

System.out.printin(linel.toString()); // Line[(11,12),(13,14)]
System.out.printin("Length: " + Tinel.length(Q)); // Length: 2.8284271247461903

Figure 1.6 Class Diagram Depicting Aggregation

Line
has -
endPointl:Point2D K>———— Point2D
endPoint2:Point2D 2/
getEndPointl():Point2D
getEndPoint2():Point2D
setEndPointl():void
setEndPoint2():void
Tength() :double
toString():String
Example 1.4 Using Aggregation
// File: Point2D.java
pubTlic class Point2D {
// Same as in Example 1.2.
}
// File: Line.java
public class Line {
// Instance variables: (@D)

private Point2D endPointl;
private Point2D endPoint2;

// Constructor:

public Line(Point2D pl, Point2D p2) {
endPointl = pl;
endPoint2 = p2;

}

// Methods:
public Point2D getEndPointl() { return endPointl; }
pubTic Point2D getEndPoint2() { return endPoint2; }

1.7: AGGREGATION

1.1

1.2

1.3

pubTlic void setEndPointl(Point2D pl) { endPointl
public void setEndPoint2(Point2D p2) { endPoint2
public double length() {

return Point2D.distance(endPointl, endPoint2);
}
public String toString() {

return "Line[" + endPointl + "," + endPoint2 + "]";
}

}

n
ko)

~
e

Review Questions

Which statement is true about methods?
Select the one correct answer.

/] @)

(a) A method is an attribute defining a particular property of an abstraction.

(b) A method is a category of objects.

(c) A method is an operation defining a particular behavior of an abstraction.

(d) A method is a blueprint for defining operations.

Which statement is true about objects?
Select the one correct answer.

(a) An object is what classes are instantiated from.
(b) An object is an instance of a class.

(c) An object is a blueprint for creating concrete realization of abstractions.

(d) An object is a reference.
(e) An object is a variable.

Which is the first line of a constructor declaration in the following code?

public class Counter {
int current, step;
pubTic Counter(int startValue, int stepValue) {
setCurrent(startValue);
setStep(stepValue);
}
public int getCurrent() { return current; }
public void setCurrent(int value) { current = value; }
public void setStep(int stepValue) { step = stepValue; }
}

Select the one correct answer.

(@ (1)
(b) ()
(© @)
(d) 4)
() (5
() (6)

/7 D

/1@
/7 (3

/1 (4
/7 (5
/7 (6)

19

20

1.4

1.5

1.6

1.7

CHAPTER 1: BASICS OF JAVA PROGRAMMING

Given that Thing is a class, how many objects are created and how many references
are declared by the following code?
Thing item, stuff;

item = new Thing();
Thing entity = new Thing(Q);

Select the two correct answers.

(a) One object is created.

(b) Two objects are created.

(c) Three objects are created.

(d) One reference is declared.

(e) Two references are declared.
(f) Three references are declared.

Which statement is true about instance members?
Select the one correct answer.

(a) An instance member is also called a static member.
(b) An instance member is always a field.

(c¢) An instance member is never a method.

(d) An instance member is always a part of an instance.
(e) An instance member always represents an operation.

How do objects communicate with each other in Java?
Select the one correct answer.

(a) They communicate by modifying each other’s fields.

(b) They communicate by modifying the static variables of each other’s classes.
(c) They communicate by calling each other’s instance methods.

(d) They communicate by calling static methods of each other’s classes.

Given the following code, which of the following statements are true?

class A {
protected int valuel;

}

class B extends A {
int value2;

}

Select the two correct answers.

(a) Class A extends class B.

(b) Class B is the superclass of class A.

(c) Class A inherits from class B.

(d) Class B is a subclass of class A.

(e) Objects of class A have a field named value2.
(f) Objects of class B have a field named valuel.

1.8: SAMPLE JAVA PROGRAM 21

1.8 Sample Java Program

The term program refers to source code that is compiled and directly executed. The
terms program and application are often used synonymously, and are so used in this
book. To create a program in Java, the program must have a class that defines a
method named main, which is invoked at runtime to start the execution of the pro-
gram. The class with this main() method is known as the entry point of the program.

Essential Elements of a Java Program

Example 1.5 comprises three classes: Point2D, Point3D, and TestPoint3D. The public
class TestPoint3D in the file TestPoint3D.java is the entry point of the program. It
defines a method with the name main. The method header of this main() method must
be declared as shown in the following method stub:

public static void main(String[] args) // Method header
{ /* Implementation */ }

The main() method has public access—that is, it is accessible from any class. The
keyword static means the method belongs to the class. The keyword void indi-
cates that the method does not return any value. The parameter args is an array of
strings that can be used to pass information to the main() method when execution
starts.

Example 1.5 A Sample Program

// File: Point2D.java
pubTic class Point2D {
// Same as in Example 1.2.

}

// File: Point3D.java
pubTlic class Point3D extends Point2D {
// Same as in Example 1.3.

}

// File: TestPoint3D.java
public class TestPoint3D {
public static void main(String[] args) {
Point3D p3A = new Point3D(10, 20, 30);
System.out.printIn("p3A: " + p3A.toString());
System.out.printin("x: " + p3A.getX());
System.out.printin("y: " + p3A.getY());
System.out.printin("z: " + p3A.getZ());
p3A.setX(-10); p3A.setY(-20); p3A.setZ(-30);
System.out.printIn("p3A: " + p3A.toString());

Point3D p3B = new Point3D(30, 20, 10);
System.out.printin("p3B: " + p3B.toString());

22

CHAPTER 1: BASICS OF JAVA PROGRAMMING

System.out.printin("Distance between p3A and p3B:
Point3D.distance(p3A, p3B));
Point3D.showInfo();
}
}

Output from the program:

+

p3A: (10,20,30)

x: 10

y: 20

z: 30

p3A: (-10,-20,-30)

p3B: (30,20,10)

Distance between p3A and p3B: 69.2820323027551
A 3D point represented by (x,y,z)-coordinates.

Compiling a Program

The JDK provides tools for compiling and running programs. The classes in the
Java SE Platform API are already compiled, and the JDK tools know where to find
them.

Java source files can be compiled using the Java Language Compiler, javac, which is
part of the JDK. Each source file name has the extension .java. Each class declara-
tion in a source file is compiled into a separate class file, containing its Java bytecode.
The name of this file comprises the name of the class with .class as its extension.

The source files Point2D. java, Point3D. java, and TestPoint3D.java contain the decla-
rations of the Point2D, Point3D, and TestPoint3D classes, respectively. The respective
source files are in the same directory. The source files can be compiled by giving
the following javac command on the command line (the character > is the com-
mand prompt and we will use bold type for anything typed on the command line):

>javac Point2D.java Point3D.java TestPoint3D.java

This javac command creates the class files Point2D.class, Point3D.class, and
TestPoint3D.class containing the Java bytecode for the Point2D, Point3D, and
TestPoint3D classes, respectively. The command creates the class files in the same
directory as the source files.

Although a Java source file can contain more than one class declaration, the Java
compiler enforces the rule that there can only be at the most one class in the source
file that has pubTic access. If there is a public class in the source file, the name of the
source file must be the name of the public class with .java as its extension. In the
absence of a public class in the source file, the name of the file can be arbitrary, but
still with the .java extension. Regardless, each class declaration in a source file is
compiled into a separate .class file.

1.8: SAMPLE JAVA PROGRAM 23

Running a Program

It is the bytecode in the class files that is executed when a Java program is run—the
source code is immaterial in this regard. A Java program is run by the Java Applica-
tion Launcher, java, which is also part of the JDK. The java command creates an
instance of the JVM that executes the bytecode.

The following java command on the command line will launch the program in
Example 1.5:

>java TestPoint3D
p3A: (10,20,30)

Note that only the name of the class that is the entry point of the program is spec-
ified, resulting in the execution starting in the main() method of the specified class.
This main() method is found in the class file of the TestPoint3D class. The program
in Example 1.5 terminates when the execution of the main() method is completed.

Running a Single-File Source-Code Program

Typically, Java source code is first compiled by the javac command to Java byte-
code in class files and then the bytecode in the class files is executed by the java
command. The compilation step can be omitted if the complete source code of the
program is contained in a single source file, meaning that all class declarations that
comprise the program are declared in one source file.

In Example 1.5, the program is composed of three source files: Point2D.java,
Point3D.java, and TestPoint3D.java, containing the declarations of the Point2D,
Point3D, and TestPoint3D classes, respectively. In Example 1.6, the class declarations
are now contained in the Demo-App. java file; in other words, the complete source
code of the program is now in a single source file. We can run the program with the
following java command, without compiling the source code first:

>java Demo-App.java
p3A: (10,20,30)

The full name of the single source file is specified in the command line. Full pro-
gram output is shown in Example 1.6.

Note that no class files are created. The source code is compiled fully in memory
and executed.

In order to run a single-file source-code program, the following conditions must be
met:
¢ The single source file must contain all source code for the program.

¢ Although there can be several class declarations in the source file, the first class
declaration in the source file must provide the main() method; that is, it must be
the entry point of the program.

24

CHAPTER 1: BASICS OF JAVA PROGRAMMING

* There must not exist class files corresponding to the class declarations in the
single source file that are accessible by the java command.

Unlike the javac command, the name of the single source file (e.g., Demo-App. java)
need not be a valid class name, but it must have the .java extension. Also unlike
the javac command, the java command allows several public classes in the single
source file (only public classes in the Demo-App. java file).

Examples of single-file source-code programs can be found throughout the book.

Example 1.6 A Single-File Source-Code Program

// File: Demo-App.java
pubTlic class TestPoint3D {
// Same as in Example 1.5.
// Provides the main() method and is the first class declaration in the file.

}

public class Point2D {
// Same as in Example 1.2.

}

pubTlic class Point3D extends Point2D {
// Same as in Example 1.3.

}
Running the program:

>java Demo-App.java

p3A: (10,20,30)

x: 10

y: 20

z: 30

p3A: (-10,-20,-30)

p3B: (30,20,10)

Distance between p3A and p3B: 69.2820323027551
A 3D point represented by (x,y,z)-coordinates.

The Java Shell Tool (jshell)

This subsection is not on any Java Developer Exam. Its sole purpose is to introduce a JDK
tool that is an excellent aid in learning Java programming.

The interactive command-line tool jshell is excellent when it comes to learning the
Java programming language. It is a Read-Evaluate-Print Loop (REPL) tool, meaning
that it continuously reads what is typed at the terminal, evaluates the input, and
prints the results. It evaluates such language constructs as declarations, state-
ments, and expressions as they are entered at the terminal, and shows the results
immediately. It provides access to the Java SE Platform API. Pressing the TAB key
results in auto-completion of the snippet, and if that fails, suggests possible
options. It is an ideal tool for quickly testing code snippets. We also encourage the
reader to consult the documentation for the jshell JDK tool.

1.10: SAMPLE JAVA APPLICATION 25

1.9

The following is an example of a session with the jshell tool:

>jshell
| Welcome to JShell -- Version 17.0.2
| For an introduction type: /help intro

jshell> int i = 20
i== 20

jshell> Math.sqrt(i)
$6 ==> 4.47213595499958

jshell> 3 + 4 * 5

§7 ==> 23
jshell> 3 + 4) * 5
$8 ==> 35

jshell> /exit
| Goodbye
>

Program Output

Data produced by a program is called output. This output can be sent to different
devices. The examples presented in this book usually send their output to a termi-
nal window, where the output is printed as a line of characters with a cursor that
advances as the characters are printed. A Java program can send its output to the
terminal window using an object called standard out. This object, which can be
accessed using the public static final field out in the System class, is an object of the
class java.io.PrintStream. This class provides methods for printing values. These
methods convert values to their text representation and print the resulting string.

The print methods convert a primitive value to a string that represents its literal
value, and then print the resulting string.

System.out.print1n(2022); // 2022

An object is first converted to its text representation by calling its toString()
method implicitly, if it is not already called explicitly on the object. The print state-
ments below will print the same text representation of the Point2D object denoted
by the reference origin:

Point2D origin = new Point2D(0, 0);
System.out.printin(origin.toString()); // (0,0)
System.out.printin(origin); // (0,0)

The toString() method called on a String object returns the String object itself. As
string literals are String objects, the following statements will print the same result:

System.out.printIn("Stranger Strings".toString()); // Stranger Strings
System.out.printin("Stranger Strings"); // Stranger Strings

26

CHAPTER 1: BASICS OF JAVA PROGRAMMING

The println() method always terminates the current line, which results in the cur-
sor being moved to the beginning of the next line. The print() method prints its
argument to the terminal window, but it does not terminate the current line:

System.out.print("Don’t terminate this line!");

To terminate a line without printing any values, we can use the no-argument
print1n() method:

System.out.printin();

Formatted Output

This subsection is not on any Java Developer Exam. It is solely included because many
examples in this book format their output to aid in understanding the computed results.

For more control over how the values are printed, we can format the output. The
following method of the java.io.PrintStream class can be used for this purpose:

PrintStream printf(String format, Object... args)

The String parameter format specifies how formatting will be done. It contains
format specifications that determine how each subsequent value in the parame-
ter args will be formatted and printed. The parameter declaration Object...
args represents an array of zero or more arguments to be formatted and
printed. The resulting string from the formatting will be printed to the destina-
tion stream. (System.out will print to the standard out object.)

Any error in the format string will result in a runtime exception.

This method returns the PrintStream on which the method is invoked, and can
be ignored, as in the examples here.

The following call to the printf() method on the standard out object formats and
prints three values:

System.out.printf("Formatted values|%5d|%8.3f|%5s|%n", // Format string
2016, Math.PI, "Hi"); // Values to format

At runtime, the following line is printed in the terminal window:
Formatted values| 2016| 3.142]| Hi |

The format string is the first argument in the method call. It contains four format
specifiers. The first three are %5d, %8.3f, and %5s, which specify how the three argu-
ments should be processed. The letter in the format specifier indicates the type of
value to format. Their location in the format string specifies where the text repre-
sentation of the arguments should be inserted. The fourth format specifier, %n, is a
platform-specific line separator. Its occurrence causes the current line to be termi-
nated, with the cursor moving to the start of the next line. All other text in the for-
mat string is fixed, including any other spaces or punctuation, and is printed
verbatim.

1.9: PROGRAM OUTPUT 27

In the preceding example, the first value is formatted according to the first format
specifier, the second value is formatted according to the second format specifier,
and so on. The | character has been used in the format string to show how many
character positions are taken up by the text representation of each value. The out-
put shows that the int value was written right-justified, spanning five character
positions using the format specifier %5d; the double value of Math.PI took up eight
character positions and was rounded to three decimal places using the format
specifier %8.3f; and the String value was written right-justified, spanning five char-
acter positions using the format specifier %5s. The format specifier %n terminates the
current line. All other characters in the format string are printed verbatim.

Table 1.2 shows examples of some selected format specifiers that can be used to
format values.

Table 1.2 Format Specifier Examples

Parameter Format Example String

value spec value printed Description
Integer "%d" 123 "123" Occupies as many character positions
value as needed.

"%6d" 123 "oo123" Occupies six character positions and

is right-justified. The printed string is
padded with leading spaces, if

necessary.
Floating- "%f" 4.567 "4.567000" Occupies as many character positions
point as needed, but always includes six
value decimal places.
"%. 2" 4.567 "4.57" Occupies as many character positions

as needed, but includes only two
decimal places. The value is rounded
in the output, if necessary.

"%6.2f" 4.567 to4.57" Occupies six character positions,
including the decimal point, and uses
two decimal places. The value is
rounded in the output, if necessary.

Any object "%s" "Hit" "Hit" The text representation of the object
occupies as many character positions
as needed.

"%bs" "Hit" toOHI The text representation of the object
occupies six character positions and is
right-justified.

"%-6s" "Hit" "Hit " The text representation of the object
occupies six character positions and is
left-justified.

28

1.8

1.9

1.10

1.11

CHAPTER 1: BASICS OF JAVA PROGRAMMING

Review Questions

Which command from the JDK will create a class file with the bytecode of the fol-
lowing source code contained in a file named Smal1Prog. java?

public class SmallProg {
public static void main(String[] args) { System.out.printIn("Good Tuck!"); }
3

Select the one correct answer.

(a) java SmallProg
(b) javac SmallProg
(c) java SmallProg.java
(d) javac SmallProg.java
(e) java SmallProg main

Which command from the JDK should be used to execute the main() method of a
class named Smal1Prog that has been compiled?

Select the one correct answer.

(a) java SmallProg

(b) javac SmallProg

(c) java SmallProg.java

(d) java SmallProg.class

(e) java SmallProg.main()

Which of the following statements are true about a single-file source-code pro-

gram?

Select the two correct answers.

(a) It can be composed of multiple class declarations in the source file, where the
first class declaration must provide the main() method.

(b) It can access previously compiled user-defined classes.

(c) It can be composed of multiple source files.

(d) It can accept program arguments on the command line.

Which statement is true about Java?
Select the one correct answer.

(a) A Java program can be executed by any JVM.

(b) Java bytecode cannot be translated to machine code.
(c) Only Java programs can be executed by a JVM.

(d) A Java program can create and destroy objects.

(e) None of the above

	Basics of Java Programming
	1.1 The Java Ecosystem
	Key Features of Java
	Multi-paradigm Programming
	Bytecode Interpreted by the JVM
	Architecture-Neutral and Portable Bytecode
	Simplicity
	Dynamic and Distributed
	Robust and Secure
	High Performance and Multithreaded

	1.2 Classes
	Declaring Members: Fields and Methods

	1.3 Objects
	Class Instantiation, Reference Values, and References

	1.4 Instance Members
	Invoking Methods

	1.5 Static Members
	1.6 Inheritance
	1.7 Aggregation
	1.1 Which statement is true about methods?
	1.2 Which statement is true about objects?
	1.3 Which is the first line of a constructor declaration in the following code?
	1.4 Given that Thing is a class, how many objects are created and how many references are declared by the following code?
	1.5 Which statement is true about instance members?
	1.6 How do objects communicate with each other in Java?
	1.7 Given the following code, which of the following statements are true?

	1.8 Sample Java Program
	Essential Elements of a Java Program
	Compiling a Program
	Running a Program
	Running a Single-File Source-Code Program
	The Java Shell Tool (jshell)

	1.9 Program Output
	Formatted Output
	1.8 Which command from the JDK will create a class file with the bytecode of the following source code contained in a file named SmallProg.java?
	1.9 Which command from the JDK should be used to execute the main() method of a class named SmallProg that has been compiled?
	1.10 Which of the following statements are true about a single-file source-code program?
	1.11 Which statement is true about Java?

