
JSE17_OCP.book Page 29 Friday, December 2, 2022 4:24 PM
2
Basic Elements, Primitive
Data Types, and Operators

Chapter Topics

• Overview of basic language elements in Java: identifiers, key-
words, separators, literals, whitespace, and comments

• Overview of primitive data types defined in Java: integral, float-
ing-point, and boolean

• Representing integers in different number systems and in memory

• Understanding type conversion categories and conversion con-
texts, and which conversions are permissible in each conversion
context

• Defining and evaluating arithmetic and boolean expressions, and
the order in which operands and operators are evaluated

• Using Java operators, including precedence and associativity rules
for expression evaluation

Java SE 17 Developer Exam Objectives

[1.1] Use primitives and wrapper classes including Math API,
parentheses, type promotion, and casting to evaluate
arithmetic and boolean expressions
❍ Primitive types, operators, expression evaluation, and type

conversions are covered in this chapter.
❍ For wrapper classes, see §8.3, p. 439.
❍ For Math API, see §8.6, p. 488.

§2.2, p. 41
to
§2.19, p. 93

Java SE 11 Developer Exam Objectives

[1.1] Use primitives and wrapper classes, including, operators,
the use of parentheses, type promotion and casting
❍ Primitive types, operators, expression evaluation, and type

conversions are covered in this chapter.
❍ For wrapper classes, see §8.3, p. 439.

§2.2, p. 41
to
§2.19, p. 93
29

30 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 30 Friday, December 2, 2022 4:24 PM
This chapter covers the low-level language elements from which high-level con-
structs are formed, the primitive data types that are provided by the language, and
the operators that can be used to compose expressions. In addition to how expres-
sions are evaluated, an understanding of which type conversions can be applied in
which context is also essential.

2.1 Basic Language Elements

Like any other programming language, the Java programming language is defined
by grammar rules that specify how syntactically legal constructs can be formed using
the language elements, and by a semantic definition that specifies the meaning of
syntactically legal constructs.

Lexical Tokens

The low-level language elements are called lexical tokens (or just tokens) and are the
building blocks for more complex constructs. Identifiers, numbers, operators, and
special characters are all examples of tokens that can be used to build high-level
constructs like expressions, statements, methods, and classes.

Identifiers

A name in a program is called an identifier. Identifiers can be used to denote classes,
methods, variables, and labels.

In Java, an identifier is composed of a sequence of characters, where each character
can be either a letter or a digit. However, the first character in an identifier must
always be a letter, as explained later.

Since Java programs are written in the Unicode character set (p. 37), characters
allowed in identifier names are interpreted according to this character set. Use of
the Unicode character set opens up the possibility of writing identifier names in
many writing scripts used around the world. As one would expect, the characters
A to Z and a to z are letters and the characters 0 to 9 are digits. A connecting punctu-
ation character (such as underscore _) and any currency symbol (such as $, ¢, ¥, or £) are
also allowed as letters in identifier names, but these characters should be used
judiciously. Note also that the underscore (_) on its own is not a legal identifier
name, but a keyword (Table 2.1, p. 31).

Identifiers in Java are case sensitive. For example, price and Price are two different
identifiers.

Examples of Legal Identifiers

number, Number, sum_$, bingo, $$_100, _007, mål, grüß

2.1: BASIC LANGUAGE ELEMENTS 31

JSE17_OCP.book Page 31 Friday, December 2, 2022 4:24 PM
Examples of Illegal Identifiers

48chevy, all@hands, grand-sum, _

The name 48chevy is not a legal identifier because it starts with a digit. The character
@ is not a legal character in an identifier. It is also not a legal operator, so all@hands
cannot be interpreted as a legal expression with two operands. The character - is not
a legal character in an identifier, but it is a legal operator; thus grand-sum could be
interpreted as a legal expression with two operands. An underscore (_) by itself is not
a legal identifier.

Keywords

Keywords are reserved words or identifiers that are predefined in the language and
cannot be used to denote other entities. All Java keywords are lowercase, and
incorrect usage results in compile-time errors.

Keywords currently defined in the language are listed in Table 2.1. The keyword
strictfp is obsolete as of Java SE 17, and its use is discouraged in new code. Con-
textual keywords that are restricted in certain contexts are listed in Table 2.2. Key-
words currently reserved, but not in use, are listed in Table 2.3. In addition, three
identifiers are reserved as predefined literals in the language: the null literal, and
the boolean literals true and false (Table 2.4). A keyword cannot be used as an
identifier. A contextual keyword cannot be used as an identifier in certain contexts.
The index at the end of the book contains references to relevant sections where cur-
rently used keywords are explained.

Table 2.1 Keywords in Java

abstract default if private this

assert do implements protected throw

boolean double import public throws

break else instanceof return transient

byte enum int short try

case extends interface static void

catch final long strictfp volatile

char finally native super while

class float new switch _ (underscore)

continue for package synchronized

Table 2.2 Contextual Keywords

exports opens requires uses

module permits sealed var

non-sealed provides to with

32 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 32 Friday, December 2, 2022 4:24 PM
Separators

Separators (also known as punctuators) are tokens that have meaning depending on
the context in which they are used; they aid the compiler in performing syntax and
semantic analysis of a program (Table 2.5). The semicolon (;) is used to terminate
a statement. A pair of curly brackets, {}, can be used to group several statements.
See the index entries for these separators for more details.

Literals

A literal denotes a constant value; in other words, the value that a literal represents
remains unchanged in the program. Literals represent numerical (integer or float-
ing-point), character, boolean, and string values. In addition, the literal null repre-
sents the null reference. Table 2.6 shows examples of literals in Java.

Integer Literals

Integer data types comprise the following primitive data types: int, long, byte, and
short (p. 41).

open record transitive yield

Table 2.3 Reserved Keywords Not Currently in Use

const goto

Table 2.4 Reserved Literals in Java

null true false

Table 2.5 Separators in Java

{ } [] ()

. ; , ... @ ::

Table 2.6 Examples of Literals

Integer 2000 0 -7

Floating-point 3.14 -3.14 .5 0.5

Character 'a' 'A' '0' ':' '-' ')'

Boolean true false

String "abba" "3.14" "for" "a piece of the action"

Table 2.2 Contextual Keywords (Continued)

2.1: BASIC LANGUAGE ELEMENTS 33

JSE17_OCP.book Page 33 Friday, December 2, 2022 4:24 PM
The default data type of an integer literal is always int, but it can be specified as
long by appending the suffix L (or l) to the integer value. The suffix L is often pre-
ferred because the suffix l and the digit 1 can be hard to distinguish. Without the
suffix, the long literals 2020L and 0L will be interpreted as int literals. There is no
direct way to specify a short or a byte literal.

In addition to the decimal number system, integer literals can be specified in the
binary (base 2, digits 0–1), octal (base 8, digits 0–7), and hexadecimal (base 16, digits 0–9
and a–f) number systems. The digits a to f in the hexadecimal system correspond
to decimal values 10 to 15. Binary, octal, and hexadecimal numbers are specified
with 0b (or 0B), 0, and 0x (or 0X) as the base or radix prefix, respectively.

Examples of decimal, binary, octal, and hexadecimal literals are shown in Table 2.7.
Note that the leading 0 (zero) digit is not the uppercase letter O. The hexadecimal
digits from a to f can also be specified with the corresponding uppercase forms (A–F).
Negative integers (e.g., -90) can be specified by prefixing the minus sign (-) to the
magnitude of the integer regardless of the number system (e.g., -0b1011010, -0132,
or -0X5a).

Table 2.7 Examples of Decimal, Binary, Octal, and Hexadecimal Literals

Decimal Binary Octal Hexadecimal

8 0b1000 010 0x8

10L 0b1010L 012L 0xaL

16 0b10000 020 0x10

27 0b11011 033 0x1b

90L 0b1011010L 0132L 0x5aL

-90 -0b1011010

or
0b1111111111111111111111

1110100110

-0132

or
037777777646

-0x5a

or
0xffffffa6

-1 -0b1

or
0b1111111111111111111111

1111111111

-01

or
037777777777

-0x1

or
0xffffffff

2147483647
(i.e., 231 - 1)

0b0111111111111111111111

1111111111

017777777777 0x7fffffff

-2147483648
(i.e., -231)

0b1000000000000000000000

0000000000

020000000000 0x80000000

1125899906842624L
(i.e., 250)

0b1000000000000000000000

000000000000000000000000

00000L

040000000000000000L 0x4000000000000L

34 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 34 Friday, December 2, 2022 4:24 PM
Representing Integers

Integer data types in Java represent signed integer values, meaning both positive
and negative integer values. The values of type char can effectively be regarded as
unsigned 16-bit integers.

Values of type byte are represented as shown in Table 2.8. A value of type byte
requires 8 bits. With 8 bits, we can represent 28 or 256 values. Java uses two’s comple-
ment (explained later) to store signed values of integer data types. For the byte data
type, this means values are in the range –128 (i.e., –27) to +127 (i.e., 27 – 1), inclusive.

Bits in an integral value are usually numbered from right to left, starting with the
least significant bit 0 (also called the rightmost bit). The representation of the signed
types sets the most significant bit to 1, indicating negative values. Adding 1 to the
maximum int value 2147483647 results in the minimum value -2147483648, such that
the values wrap around for integers and no overflow or underflow is indicated.

Table 2.8 Representing Signed byte Values Using Two’s Complement

Decimal value

Binary
representation
 (8 bit)

Binary value
with prefix 0b

Octal value
with prefix 0

Hexadecimal
value with
prefix 0x

127 01111111 0b1111111 0177 0x7f

126 01111110 0b1111110 0176 0x7e

...

41 00101001 0b101001 051 0x29

...

2 00000010 0b10 02 0x2

1 00000001 0b1 01 0x1

0 00000000 0b0 00 0x0

–1 11111111 0b11111111 0377 0xff

–2 11111110 0b11111110 0376 0xfe

...

–41 11010111 0b11010111 0327 0xd7

...

–127 10000001 0b10000001 0201 0x81

–128 10000000 0b10000000 0200 0x80

2.1: BASIC LANGUAGE ELEMENTS 35

JSE17_OCP.book Page 35 Friday, December 2, 2022 4:24 PM
Calculating Two’s Complement

Before we look at two’s complement, we need to understand one’s complement.
The one’s complement of a binary integer is computed by inverting the bits in the
number. Thus the one’s complement of the binary number 00101001 is 11010110.
The one’s complement of a binary number N2 is denoted as ~N2. The following
relations hold between a binary integer N2, its one’s complement ~N2, and its two’s
complement –N2:

–N2 = ~N2 + 1

 0 = –N2 + N2

If N2 is a positive binary integer, then –N2 denotes its negative binary value, and
vice versa. The second relation states that adding a binary integer N2 to its two’s
complement –N2 equals 0.

Given a positive byte value, say 41, the binary representation of -41 can be found
as follows:

Adding a number N2 to its two’s complement –N2 gives 0, and the carry bit from
the addition of the most significant bits (after any necessary extension of the oper-
ands) is ignored:

Subtraction between two integers is also computed as addition with two’s
complement:

N2 – M2 = N2 + (–M2)

For example, the expression 4110 – 310 (with the correct result 3810) is computed as
follows:

Binary representation Decimal value

Given a value, N2: 00101001 41

Form one’s complement, ~N2: 11010110

Add 1: 00000001

Result is two’s complement, –N2: 11010111 –41

Binary representation Decimal value

Given a value, N2: 00101001 41

Add two’s complement, –N2: 11010111 –41

Sum: 00000000 0

36 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 36 Friday, December 2, 2022 4:24 PM
The previous discussion of byte values applies equally to values of other integer
types: short, int, and long. These types have their values represented by two’s com-
plement in 16, 32, and 64 bits, respectively.

Floating-Point Literals

Floating-point data types come in two flavors: float and double.

The default data type of a floating-point literal is double, but it can be explicitly
designated by appending the suffix D (or d) to the value. A floating-point literal can
also be specified to be a float by appending the suffix F (or f).

Floating-point literals can also be specified in scientific notation, where E (or e)
stands for exponent. For example, the double literal 194.9E-2 in scientific notation is
interpreted as 194.9 × 10-2 (i.e., 1.949).

Examples of double Literals

0.0 0.0d 0D
0.49 .49 .49D
49.0 49. 49D
4.9E+1 4.9E+1D 4.9e1d 4900e-2 .49E2

Examples of float Literals

0.0F 0f
0.49F .49F
49.0F 49.F 49F
4.9E+1F 4900e-2f .49E2F

Note that the decimal point and the exponent are optional, and that at least one
digit must be specified. Also, for the examples of float literals presented here, the
suffix F is mandatory; if it were omitted, they would be interpreted as double liter-
als.

Underscores in Numerical Literals

The underscore character (_) can be used to improve the readability of numerical
literals in the source code. Any number of underscores can be inserted between the
digits that make up the numerical literal. This rules out underscores adjacent to the
sign (+, -), the radix prefix (0b, 0B, 0x, 0X), the decimal point (.), the exponent (e, E),
and the data type suffix (l, L, d, D, f, F), as well as before the first digit and after the

Binary representation Decimal value

Given a value, N2: 00101001 41

Add –M2 (i.e., subtract M2): 11111101 –3

Result: 00100110 38

2.1: BASIC LANGUAGE ELEMENTS 37

JSE17_OCP.book Page 37 Friday, December 2, 2022 4:24 PM
last digit. Note that octal radix prefix 0 is part of the definition of an octal literal and
is therefore considered the first digit of an octal literal.

Underscores in identifiers are treated as letters. For example, the names _XXL and
XXL are two distinct legal identifiers. In contrast, underscores are used as a nota-
tional convenience for numerical literals and are ignored by the compiler when
used in such literals. In other words, a numerical literal can be specified in the
source code using underscores between digits, such that 2_0_2_2 and 20__22 repre-
sent the same numerical literal 2022 in source code.

Examples of Legal Use of Underscores in Numerical Literals

0b0111_1111_1111_1111_1111_1111_1111_1111
0_377_777_777 0xff_ff_ff_ff
-123_456.00 1_2.345_678e1_2
2009__08__13 49_03_01d

Examples of Illegal Use of Underscores in Numerical Literals

_0_b_01111111111111111111111111111111_
0377777777 _0_x_ffffffff_
+_123456_._00_ _12_._345678_e_12_
20090813 _490301_d_

Boolean Literals

The primitive data type boolean represents the truth values true and false that are
denoted by the reserved literals true and false, respectively.

Character Literals

A character literal is quoted in single quotes ('). All character literals have the prim-
itive data type char.

A character literal is represented according to the 16-bit Unicode character set,
which subsumes the 8-bit ISO Latin-1 and the 7-bit ASCII characters. In Table 2.9,
note that digits (0–9), uppercase letters (A–Z), and lowercase letters (a–z) have con-
tiguous Unicode values. A Unicode character can always be specified as a
four-digit hexadecimal number (i.e., 16 bits) with the prefix \u.

Table 2.9 Examples of Character Literals

Character literal
Character literal using
Unicode value Character

' ' '\u0020' Space

'0' '\u0030' 0

'1' '\u0031' 1

'9' '\u0039' 9

38 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 38 Friday, December 2, 2022 4:24 PM
Escape Sequences

Certain escape sequences define special characters, as shown in Table 2.10. These
escape sequences allow representation of some special characters in character liter-
als, string literals (p. 39), and text blocks (§8.4, p. 468). These escape sequences can be
single-quoted to define character literals, or included in string literals and text
blocks. For example, the escape sequence \t and the Unicode value \u0009 are equiv-
alent. However, the Unicode values \u000a and \u000d should not be used to repre-
sent a newline and a carriage return in the source code. These values are interpreted
as line-terminator characters by the compiler and will cause compile-time errors.
You should use the escape sequences \n and \r, respectively, for correct interpreta-
tion of these characters in the source code.

'A' '\u0041' A

'B' '\u0042' B

'Z' '\u005a' Z

'a' '\u0061' a

'b' '\u0062' b

'z' '\u007a' z

'Ñ' '\u0084' Ñ

'å' '\u008c' å

'ß' '\u00a7' ß

Table 2.10 Escape Sequences

Escape sequence Unicode value Character

\b \u0008 Backspace (BS)

\t \u0009 Horizontal tab (HT or TAB)

\n \u000a Linefeed (LF), also known as newline (NL)

\f \u000c Form feed (FF)

\r \u000d Carriage return (CR)

\s \u0020 Space (SP)

\Line terminator _ Line continuation in a text block

\' \u0027 Apostrophe-quote, also known as single quote

\" \u0022 Quotation mark, also known as double quote

\\ \u005c Backslash

Table 2.9 Examples of Character Literals (Continued)

Character literal
Character literal using
Unicode value Character

2.1: BASIC LANGUAGE ELEMENTS 39

JSE17_OCP.book Page 39 Friday, December 2, 2022 4:24 PM
We can also use the escape sequence \ddd to specify a character literal as an octal
value, where each digit d can be any octal digit (0–7), as shown in Table 2.11. The
number of digits must be three or fewer, and the octal value cannot exceed \377; in
other words, only the first 256 characters can be specified with this notation.

String Literals

A string literal is a sequence of characters that must be enclosed in double quotes
and must occur on a single line. All string literals are objects of the class String
(§8.4, p. 449).

Escape sequences as well as Unicode values can appear in string literals:

In (1), the tab character is specified using the escape sequence and the Unicode
value, respectively. In (2), the single quote need not be escaped in strings, but it
would be if specified as a character literal ('\''). In (3), the double quotes in the
string must be escaped. In (4), we use the escape sequence \n to insert a newline.
The expression in (5) generates a compile-time error, as the string literal is split
over several lines. Printing the strings from (1) to (4) will give the following
result:

Here comes a tab. And here comes another one !
What's on the menu?
"String literals are double-quoted."
Left!
Right!

One should also use the escape sequences \n and \r, respectively, for correct inter-
pretation of the characters \u000a (newline) and \u000d (form feed) in string literals.

Table 2.11 Examples of Escape Sequence \ddd

Escape sequence \ddd Character literal

'\141' 'a'

'\46' '&'

'\60' '0'

"Here comes a tab.\t And here comes another one\u0009!"
"What's on the menu?"
"\"String literals are double-quoted.\""
"Left!\nRight!"
"Don't split
me up!"

(1)
(2)
(3)
(4)
(5)

40 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 40 Friday, December 2, 2022 4:24 PM
Whitespace

Whitespace is a sequence of spaces, tabs, form feeds, and line terminator characters
in a Java source file. Line terminators include the newline, carriage return, and car-
riage return–newline sequence.

A Java program is a free-format sequence of characters that is tokenized by the com-
piler—that is, broken into a stream of tokens for further analysis. Separators and
operators help to distinguish tokens, but sometimes whitespace has to be inserted
explicitly as a separator. For example, the identifier classRoom will be interpreted as
a single token, unless whitespace is inserted to distinguish the keyword class from
the identifier Room.

Whitespace aids not only in separating tokens, but also in formatting the program
so that it is easy to read. The compiler ignores the whitespace once the tokens are
identified.

Comments

A program can be documented by inserting comments at relevant places in the
source code. These comments are for documentation purposes only and are
ignored by the compiler.

Java provides three types of comments that can be used to document a program:

• A single-line comment: // ... to the end of the line
• A multiple-line comment: /* ... */
• A documentation (Javadoc) comment: /** ... */’

Single-Line Comment

All characters after the comment-start sequence // through to the end of the line
constitute a single-line comment.

// This comment ends at the end of this line.
int age; // From comment-start sequence to the end of the line is a comment.

Multiple-Line Comment

A multiple-line comment, as the name suggests, can span several lines. Such a com-
ment starts with the sequence /* and ends with the sequence */.

/* A comment
 on several
 lines.
*/

2.2: PRIMITIVE DATA TYPES 41

JSE17_OCP.book Page 41 Friday, December 2, 2022 4:24 PM
The comment-start sequences (//, /*, /**) are not treated differently from other
characters when occurring within comments, so they are ignored. This means that
trying to nest multiple-line comments will result in a compile-time error:

/* Formula for alchemy.
 gold = wizard.makeGold(stone);
 /* But it only works on Sundays. */
*/

The second occurrence of the comment-start sequence /* is ignored. The last occur-
rence of the sequence */ in the code is now unmatched, resulting in a syntax error.

Documentation Comment

A documentation comment is a special-purpose multiple-line comment that is used
by the javadoc tool to generate HTML documentation for the program. Documen-
tation comments are usually placed in front of classes, interfaces, methods, and
field definitions. Special tags can be used inside a documentation comment to pro-
vide more specific information. Such a comment starts with the sequence /** and
ends with the sequence */:

/**
 * This class implements a gizmo.
 * @author K.A.M.
 * @version 4.0
 */

For details on the javadoc tool, see the tools documentation provided by the JDK.

2.2 Primitive Data Types

Figure 2.1 gives an overview of the primitive data types in Java.

Primitive data types in Java can be divided into three main categories:

• Integral types: represent signed integers (byte, short, int, long) and unsigned
character values (char)

• Floating-point types (float, double): represent fractional signed numbers
• Boolean type (boolean): represents logical values

Each primitive data type defines the range of values in the data type, and opera-
tions on these values are defined by special operators in the language (p. 51).

Primitive data values are not objects, but each primitive data type has a correspond-
ing wrapper class that can be used to represent a primitive value as an object. Wrap-
per classes are discussed in §8.3, p. 439.

The Integer Types

42 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 42 Friday, December 2, 2022 4:24 PM
The integer data types are byte, short, int, and long (Table 2.12). Their values are
signed integers represented by two’s complement (p. 35).

The char Type

The data type char represents characters (Table 2.13). Their values are unsigned
integers that denote all of the 65,536 (216) characters in the 16-bit Unicode character
set. This set includes letters, digits, and special characters.

The first 128 characters of the Unicode set are the same as the 128 characters of the
7-bit ASCII character set, and the first 256 characters of the Unicode set correspond
to the 256 characters of the 8-bit ISO Latin-1 character set.

The integer types and the char type are collectively called integral types.

Figure 2.1 Primitive Data Types in Java

Table 2.12 Range of Integer Values

Data type
Width
(bits) Minimum value MIN_VALUE Maximum value MAX_VALUE

byte 8 –27 (–128) 27 – 1 (+127)

short 16 –215 (–32768) 215 – 1 (+32767)

int 32 –231 (–2147483648) 231 – 1 (+2147483647)

long 64 –263 (–9223372036854775808L) 263 – 1 (+9223372036854775807L)

Table 2.13 Range of Character Values

Data
type Width (bits) Minimum Unicode value Maximum Unicode value

char 16 0x0 (\u0000) 0xffff (\uffff)

Boolean type Numeric types

Integral types Floating-point types

Character type Integer types

charboolean short byte int long float double

Primitive data types

2.2: PRIMITIVE DATA TYPES 43

JSE17_OCP.book Page 43 Friday, December 2, 2022 4:24 PM
The Floating-Point Types

Floating-point numbers are represented by the float and double data types.

Floating-point numbers conform to the IEEE 754-1985 binary floating-point stan-
dard. Table 2.14 shows the range of values for positive floating-point numbers, but
these apply equally to negative floating-point numbers with the minus sign (-) as
a prefix. Zero can be either 0.0 or -0.0. The range of values represented by the dou-
ble data type is wider than that of the float data type.

Since the size for representation is a finite number of bits, certain floating-point
numbers can be represented only as approximations. For example, the value of the
expression (1.0/3.0) is represented as an approximation due to the finite number
of bits used to represent floating-point numbers.

The boolean Type

The data type boolean represents the two logical values denoted by the literals true
and false (Table 2.15).

Boolean values are results of all relational (p. 75), conditional (p. 81), and boolean
(p. 79) logical operators.

Table 2.16 summarizes the pertinent facts about the primitive data types: their width
or size, which indicates the number of bits required to store a primitive value; their
range of legal values, which is specified by the minimum and maximum values per-
missible; and the name of the corresponding wrapper class (§8.3, p. 439).

Table 2.14 Range of Floating-Point Values

Data type
Width
(bits)

Minimum positive value
MIN_VALUE

Maximum positive value
MAX_VALUE

float 32 1.401298464324817E-45f 3.402823476638528860e+38f

double 64 4.94065645841246544e-324 1.79769313486231570e+308

Table 2.15 Boolean Values

Data type Width True value literal False value literal

boolean Not applicable true false

Table 2.16 Summary of Primitive Data Types

Data type Width (bits) Minimum value, maximum value Wrapper class

boolean Not applicable true, false Boolean

byte 8 –27, 27 – 1 Byte

44 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 44 Friday, December 2, 2022 4:24 PM
2.3 Conversions

In this section we discuss the different kinds of type conversions that can be applied
to values; in the next section we discuss the contexts in which these conversions are
permitted. Some type conversions must be explicitly stated in the program, while
others are performed implicitly. Some type conversions can be checked at compile
time to guarantee their validity at runtime, while others will require an extra check
at runtime.

Widening and Narrowing Primitive Conversions

For the primitive data types, the value of a narrower data type can be converted to
a value of a wider data type. This is called a widening primitive conversion. Widening
conversions from one primitive type to the next wider primitive type are summa-
rized in Figure 2.2. The conversions shown are transitive. For example, an int can
be directly converted to a double without first having to convert it to a long and a
float.

Note that the target type of a widening primitive conversion has a wider range of
values than the source type—for example, the range of the long type subsumes the
range of the int type. In widening conversions between integral types, the source
value remains intact, with no loss of magnitude information. However, a widening
conversion from an int or a long value to a float value, or from a long value to a
double value, may result in a loss of precision. The floating-point value in the target
type is then a correctly rounded approximation of the integer value. Note that pre-
cision relates to the number of significant bits in the value, and must not be con-
fused with magnitude, which relates to how large the represented value can be.

Converting from a wider primitive type to a narrower primitive type is called a
narrowing primitive conversion; it can result in a loss of magnitude information, and
possibly in a loss of precision as well. Any conversion that is not a widening prim-

short 16 –215, 215 – 1 Short

char 16 0x0, 0xffff Character

int 32 –231, 231 – 1 Integer

long 64 –263, 263 – 1 Long

float 32 ±1.40129846432481707e-45f,
±3.402823476638528860e+38f

Float

double 64 ±4.94065645841246544e-324,
±1.79769313486231570e+308

Double

Table 2.16 Summary of Primitive Data Types (Continued)

Data type Width (bits) Minimum value, maximum value Wrapper class

2.3: CONVERSIONS 45

JSE17_OCP.book Page 45 Friday, December 2, 2022 4:24 PM
itive conversion according to Figure 2.2 is a narrowing primitive conversion. The
target type of a narrowing primitive conversion has a narrower range of values than
the source type—for example, the range of the int type does not include all the val-
ues in the range of the long type.

Note that all conversions between char and the two integer types byte and short are
considered narrowing primitive conversions. The reason is that the conversions
between the unsigned type char and the signed types byte and short can result in a
loss of information. These narrowing conversions are done in two steps: first con-
verting the source value to the int type, and then converting the int value to the
target type.

Widening primitive conversions are usually done implicitly, whereas narrowing
primitive conversions usually require a cast (p. 49). It is not illegal to use a cast for
a widening conversion. However, the compiler will flag any conversion that
requires a cast if none has been specified. Regardless of any loss of magnitude or
precision, widening and narrowing primitive conversions never result in a runtime
exception.

long year = 2020; // (1) Implicit widening: long <----- int, assigned 2020L

int pi = (int) 3.14; // (2) Narrowing requires cast: int <----- double, assigned 3

Ample examples of widening and narrowing primitive conversions can be found
in this chapter.

Widening and Narrowing Reference Conversions

The subtype–supertype relationship between reference types determines which con-
versions are permissible between them (§5.1, p. 195). Conversions up the type hier-
archy are called widening reference conversions (also called upcasting). Such a
conversion converts from a subtype to a supertype:

Object obj = "Upcast me"; // (1) Widening: Object <----- String

Conversions down the type hierarchy represent narrowing reference conversions (also
called downcasting):

String str = (String) obj; // (2) Narrowing requires cast: String <----- Object

A subtype is a narrower type than its supertype in the sense that it is a specialization
of its supertype. Contexts under which reference conversions can occur are dis-
cussed in §5.8, p. 266.

Figure 2.2 Widening Primitive Conversions

double float long int

short

char

byte

46 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 46 Friday, December 2, 2022 4:24 PM
Widening reference conversions are usually done implicitly, whereas narrowing
reference conversions usually require a cast, as illustrated in the second declara-
tion statement above. The compiler will reject casts that are not legal or will issue
an unchecked warning under certain circumstances if type-safety cannot be guar-
anteed.

Widening reference conversions do not require any runtime checks and never
result in an exception during execution. This is not the case for narrowing reference
conversions, which require a runtime check and can throw a ClassCastException if
the conversion is not legal.

Boxing and Unboxing Conversions

Boxing and unboxing conversions allow interoperability between primitive values
and their representation as objects of the wrapper types (§8.3, p. 439).

A boxing conversion converts the value of a primitive type to a corresponding value
of its wrapper type, and an unboxing conversion converts the value of a wrapper
type to a value of its corresponding primitive type. Both boxing and unboxing con-
version are applied implicitly in the right context, but the wrapper classes also pro-
vide the static method valueOf() to explicitly box a primitive value in a wrapper
object, and the method primitiveTypeValue() to explicitly unbox the value in a wrap-
per object as a value of primitiveType.

Integer iRef = 10; // (1) Implicit boxing: Integer <----- int
Double dRef = Double.valueOf(3.14); // (2) Explicit boxing: Double <----- double

int i = iRef; // (3) Implicit unboxing: int <----- Integer
double d = dRef.doubleValue(); // (4) Explicit unboxing: double <----- Double

At (1) above, the int value 10 results in an object of type Integer implicitly being
created; this object contains the int value 10. We say that the int value 10 has been
boxed in an object of the wrapper type Integer. This implicit boxing conversion is
also called autoboxing. An explicit boxing by the valueOf() method of the wrapper
classes is used at (2) to box a double value.

Unboxing conversion is illustrated by (3) and (4) above. Implicit unboxing is applied
at (3) to unbox the value in the Integer object, and explicit unboxing is applied at (4)
by calling the doubleValue() method of the Double class.

Note that both boxing and unboxing are done implicitly in the right context. Boxing
allows primitive values to be used where an object of their wrapper type is expected,
and unboxing allows the converse. Unboxing makes it possible to use a Boolean
wrapper object as a boolean value in a boolean expression, and to use an integral
wrapper object as an integral primitive value in an arithmetic expression. Unbox-
ing a wrapper reference that has the null value results in a NullPointerException.
Ample examples of boxing and unboxing can be found in this chapter and in §5.8,
p. 266.

2.4: TYPE CONVERSION CONTEXTS 47

JSE17_OCP.book Page 47 Friday, December 2, 2022 4:24 PM
Other Conversions

Here we briefly mention some other conversions.

• Identity conversions allow conversions from a type to that same type. An iden-
tity conversion is always permitted.

int i = (int) 10; // int <---- int
String str = (String) "Hi"; // String <---- String

• String conversions allow a value of any other type to be converted to a String
type in the context of the string concatenation operator + (p. 68).

• Unchecked conversions are permitted to facilitate operability between legacy and
generic code (§11.2, p. 589).

2.4 Type Conversion Contexts

Selected conversion contexts and the conversions that are applicable in these con-
texts are summarized in Table 2.17. The conversions shown in each context occur
implicitly, without the program having to take any special action. For other conver-
sion contexts, see §2.3, p. 47.

Table 2.17 Selected Conversion Contexts and Conversion Categories

Conversion
categories

Conversion contexts

Assignment Method invocation Casting
Numeric
promotion

Widening/
narrowing
primitive
conversions

Widening

Narrowing for
constant
expressions of
non-long integral
type, with optional
boxing

Widening Both Widening

Widening/
narrowing
reference
conversions

Widening Widening Both,
followed
by
optional
unchecked
conversion

Not
applicable

48 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 48 Friday, December 2, 2022 4:24 PM
Assignment Context

Assignment conversions that can occur in an assignment context are shown in the
second column of Table 2.17. An assignment conversion converts the type of an
expression to the type of a target variable.

An expression (or its value) is assignable to the target variable, if the type of the
expression can be converted to the type of the target variable by an assignment
conversion. Equivalently, the type of the expression is assignment compatible with
the type of the target variable.

For assignment conversion involving primitive data types, see §2.7, p. 55. Note the
special case where a narrowing conversion occurs when assigning a non-long inte-
ger constant expression:

byte b = 10; // Narrowing conversion: byte <--- int

For assignment conversions involving reference types, see §5.8, p. 266.

Method Invocation Context

Method invocation conversions that can occur in a method invocation context are
shown in the third column of Table 2.17. Note that method invocation and assign-
ment conversions differ in one respect: Method invocation conversions do not
include the implicit narrowing conversion performed for non-long integral con-
stant expressions.

// Assignment: (1) Implicit narrowing followed by (2) boxing.
Character space1 = 32; // Character <-(2)-- char <-(1)-- int

// Invocation of method with signature: valueOf(char)
Character space2 = Character.valueOf(32); // Compile-time error!
 // Call signature: valueOf(int)
Character space3 = Character.valueOf((char)32); // OK!

Boxing/
unboxing
conversions

Unboxing, followed
by optional
widening primitive
conversion

Boxing, followed by
optional widening
reference
conversion

Unboxing, followed
by optional
widening primitive
conversion

Boxing, followed by
optional widening
reference
conversion

Both Unboxing,
followed
by
optional
widening
primitive
conversion

Table 2.17 Selected Conversion Contexts and Conversion Categories (Continued)

Conversion
categories

Conversion contexts

Assignment Method invocation Casting
Numeric
promotion

2.4: TYPE CONVERSION CONTEXTS 49

JSE17_OCP.book Page 49 Friday, December 2, 2022 4:24 PM
 // Call signature: valueOf(char)

A method invocation conversion involves converting each argument value in a
method or constructor call to the type of the corresponding formal parameter in
the method or constructor declaration.

Method invocation conversions involving parameters of primitive data types are
discussed in §3.10, p. 129, and those involving reference types are discussed in §5.8,
p. 266.

Casting Context of the Unary Type Cast Operator (type)

Java, being a strongly typed language, checks for type compatibility (i.e., it checks
whether a type can substitute for another type in a given context) at compile time.
However, some checks are possible only at runtime (e.g., which type of object a ref-
erence actually denotes during execution). In cases where an operator would have
incompatible operands (e.g., assigning a double to an int), Java demands that a type
cast be used to explicitly indicate the type conversion. The type cast construct has
the following syntax:

(type) expression

The cast operator (type) is applied to the value of the expression. At runtime, a cast
results in a new value of type, which best represents the value of the expression in
the old type. We use the term casting to mean applying the cast operator for explicit
type conversion.

However, in the context of casting, implicit casting conversions can take place.
These casting conversions are shown in the fourth column of Table 2.17. Casting
conversions include more conversion categories than the assignment or the
method invocation conversions. In the code that follows, the comments indicate
the category of the conversion that takes place because of the cast operator on the
right-hand side of each assignment—although casts are only necessary for the sake
of the assignment at (1) and (2).

long l = (long) 10; // Widening primitive conversion: long <--- int
int i = (int) l; // (1) Narrowing primitive conversion: int <--- long
Object obj = (Object) "7Up"; // Widening ref conversion: Object <--- String
String str = (String) obj; // (2) Narrowing ref conversion: String <--- Object
Integer iRef = (Integer) i; // Boxing: Integer <--- int
i = (int) iRef; // Unboxing: int <--- Integer

A casting conversion is applied to the value of the operand expression of a cast oper-
ator. Casting can be applied to primitive values as well as references. Casting
between primitive data types and reference types is not permitted, except where
boxing and unboxing is applicable. Boolean values cannot be cast to other data val-
ues, and vice versa. The reference literal null can be cast to any reference type.

Examples of casting between primitive data types are provided in this chapter.
Casting reference values is discussed in §5.11, p. 274.

50 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 50 Friday, December 2, 2022 4:24 PM
Numeric Promotion Context

Numeric operators allow only operands of certain types. Numeric promotion
results in conversions being applied to the operands to convert them to permissible
types. Numeric promotion conversions that can occur in a numeric promotion context
are shown in the fifth column of Table 2.17. Permissible conversion categories are
widening primitive conversions and unboxing conversions. A distinction is made
between unary and binary numeric promotion.

Unary Numeric Promotion

Unary numeric promotion proceeds as follows:

• If the single operand is of type Byte, Short, Character, or Integer, it is unboxed. If
the resulting value is narrower than int, it is promoted to a value of type int by
a widening conversion.

• Otherwise, if the single operand is of type Long, Float, or Double, it is unboxed.

• Otherwise, if the single operand is of a type narrower than int, its value is pro-
moted to a value of type int by a widening conversion.

• Otherwise, the operand remains unchanged.

In other words, unary numeric promotion results in an operand value that is either int
or wider.

Unary numeric promotion is applied in the following expressions:

• Operand of the unary arithmetic operators + and - (p. 59)
• Array creation expression; for example, new int[20], where the dimension

expression (in this case, 20) must evaluate to an int value (§3.9, p. 118)
• Indexing array elements; for example, objArray['a'], where the index expres-

sion (in this case, 'a') must evaluate to an int value (§3.9, p. 121)

Binary Numeric Promotion

Binary numeric promotion implicitly applies appropriate widening primitive con-
versions so that the widest numeric type of a pair of operands is always at least int.
If T is the widest numeric type of two operands after any unboxing conversions
have been performed, the operands are promoted as follows during binary
numeric promotion:

If T is wider than int, both operands are converted to T; otherwise, both
operands are converted to int.

This means that the resulting type of the operands is at least int.

Binary numeric promotion is applied in the following expressions:

• Operands of the arithmetic operators *, /, %, +, and - (p. 59)
• Operands of the relational operators <, <=, >, and >= (p. 75)

2.5: PRECEDENCE AND ASSOCIATIVITY RULES FOR OPERATORS 51

JSE17_OCP.book Page 51 Friday, December 2, 2022 4:24 PM
• Operands of the numerical equality operators == and != (p. 76)
• Operands of the conditional operator ? :, under certain circumstances

(p. 92)

2.5 Precedence and Associativity Rules for Operators

Precedence and associativity rules are necessary for deterministic evaluation of
expressions. The operators are summarized in Table 2.18. The majority of them are
discussed in subsequent sections in this chapter. See also the index entries for these
operators.

The following remarks apply to Table 2.18:

• The operators are shown with decreasing precedence from the top of the table.
• Operators within the same row have the same precedence.
• Parentheses, (), can be used to override precedence and associativity.
• The unary operators, which require one operand, include the following: the post-

fix increment (++) and decrement (--) operators from the first row, all the prefix
operators (+, -, ++, --, ~, !) in the second row, and the prefix operators (object
creation operator new, cast operator (type)) in the third row.

• The conditional operator (? :) is ternary—that is, it requires three operands.
• All operators not identified previously as unary or ternary are binary—that is,

they require two operands.
• All binary operators, except for the relational and assignment operators, associ-

ate from left to right. The relational operators are nonassociative.
• Except for unary postfix increment and decrement operators, all unary opera-

tors, all assignment operators, and the ternary conditional operator associate
from right to left.

Depending on the context, brackets ([]), parentheses (()), the colon (:), and the dot
operator (.) can also be interpreted as separators (p. 32). See the index entries for
these separators for more details.

Table 2.18 Operator Summary

Array element access,
member access,
method invocation

[expression] . (args)

Unary postfix operators expression++ expression--

Unary prefix operators ~ ! ++expression --expression +expression -expression

Unary prefix creation and cast new (type)

Multiplicative * / %

Additive + -

52 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 52 Friday, December 2, 2022 4:24 PM
Precedence rules are used to determine which operator should be applied first if
there are two operators with a different precedence, and these operators follow each
other in the expression. In such a case, the operator with the highest precedence is
applied first.

The expression 2 + 3 * 4 is evaluated as 2 + (3 * 4) (with the result 14) since * has
higher precedence than +.

Associativity rules are used to determine which operator should be applied first if
there are two operators with the same precedence, and these operators follow each
other in the expression.

Left associativity implies grouping from left to right: The expression 7 - 4 + 2 is
interpreted as ((7 - 4) + 2), since the binary operators + and - both have the same
precedence and left associativity.

Right associativity implies grouping from right to left: The expression - - 4 is
interpreted as (- (- 4)) (with the result 4), since the unary operator - has right
associativity.

The precedence and associativity rules together determine the evaluation order of the
operators.

2.6 Evaluation Order of Operands

To understand the result returned by an operator, it is important to understand the
evaluation order of its operands. In general, the operands of operators are evaluated
from left to right. The evaluation order also respects any parentheses, and the pre-
cedence and associativity rules of operators.

Shift << >> >>>

Relational < <= > >= instanceof

Equality == !=

Bitwise/logical AND &

Bitwise/logical XOR ^

Bitwise/logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Arrow operator ->

Assignment = += -= *= /= %= <<= >>= >>>= &= ^= |=

Table 2.18 Operator Summary (Continued)

2.6: EVALUATION ORDER OF OPERANDS 53

JSE17_OCP.book Page 53 Friday, December 2, 2022 4:24 PM
Examples illustrating how the operand evaluation order influences the result
returned by an operator can be found in §2.7, p. 55, and §2.10, p. 70.

Left-Hand Operand Evaluation First

The left-hand operand of a binary operator is fully evaluated before the right-hand
operand is evaluated.

The evaluation of the left-hand operand can have side effects that can influence the
value of the right-hand operand. For example, in the code

int b = 10;
System.out.println((b=3) + b);

the value printed will be 6 and not 13. The evaluation proceeds as follows:

 (b=3) + b

 3 + b b is assigned the value 3
 3 + 3

 6

If evaluation of the left-hand operand of a binary operator throws an exception
(§7.1, p. 373), we cannot rely on the presumption that the right-hand operand has
been evaluated.

Operand Evaluation before Operation Execution

Java guarantees that all operands of an operator are fully evaluated before the actual
operation is performed. This rule does not apply to the short-circuit conditional
operators &&, ||, and ?:.

This rule also applies to operators that throw an exception (the integer division
operator / and the integer remainder operator %). The operation is performed only
if the operands evaluate normally. Any side effects of the right-hand operand will
have been effectuated before the operator throws an exception.

Example 2.1 illustrates the evaluation order of the operands and precedence rules
for arithmetic expressions. We use the eval() method at (3) in Example 2.1 to dem-
onstrate integer expression evaluation. The first argument to this method is the
operand value that is returned by the method, and the second argument is a string
to identify the evaluation order.

The argument to the println() method in the statement at (1) is an integer expres-
sion to evaluate 2 + 3 * 4. The evaluation of each operand in the expression at (1)
results in a call of the eval() method declared at (3).

out.println(eval(j++, " + ") + eval(j++, " * ") * eval(j, "\n")); // (1)

The output from Example 2.1 shows that the operands were evaluated first, from
left to right, before operator execution, and that the expression was evaluated as
(2 + (3 * 4)), respecting the precedence rules for arithmetic expression evaluation.

54 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 54 Friday, December 2, 2022 4:24 PM
Note how the value of variable j changes successively from left to right as the first
two operands are evaluated.

Example 2.1 Evaluation Order of Operands and Arguments

import static java.lang.System.out;

public class EvalOrder{
 public static void main(String[] args){

 int j = 2;
 out.println("Evaluation order of operands:");
 out.println(eval(j++, " + ") + eval(j++, " * ") * eval(j, "\n")); // (1)

 int i = 1;
 out.println("Evaluation order of arguments:");
 add3(eval(i++, ", "), eval(i++, ", "), eval(i, "\n")); // (2) Three arguments.
 }

 public static int eval(int operand, String str) { // (3)
 out.print(operand + str); // Print int operand and String str.
 return operand; // Return int operand.
 }

 public static void add3(int operand1, int operand2, int operand3) { // (4)
 out.print(operand1 + operand2 + operand3);
 }
}

Output from the program:

Evaluation order of operands:
2 + 3 * 4
14
Evaluation order of arguments:
1, 2, 3
6

Left-to-Right Evaluation of Argument Lists

In a method or constructor invocation, each argument expression in the argument
list is fully evaluated before any argument expression to its right.

If evaluation of an argument expression does not complete normally, we cannot
presume that any argument expression to its right has been evaluated.

We can use the add3() method at (4) in Example 2.1, which takes three arguments,
to demonstrate the order in which the arguments in a method call are evaluated.
The method call at (2)

add3(eval(i++, ", "), eval(i++, ", "), eval(i, "\n")); // (2) Three arguments.

2.7: THE SIMPLE ASSIGNMENT OPERATOR = 55

JSE17_OCP.book Page 55 Friday, December 2, 2022 4:24 PM
results in the following output, clearly indicating that the arguments were evalu-
ated from left to right, before being passed to the method:

1, 2, 3
6

Note how the value of variable i changes successively from left to right as the first
two arguments are evaluated.

2.7 The Simple Assignment Operator =

The assignment statement has the following syntax:

variable = expression

which can be read as “the target, variable, gets the value of the source, expression.”
The previous value of the target variable is overwritten by the assignment operator =.

The target variable and the source expression must be assignment compatible. The
target variable must also have been declared. Since variables can store either prim-
itive values or reference values, expression evaluates to either a primitive value or
a reference value.

Assigning Primitive Values

The following examples illustrate assignment of primitive values:

int j, k;
j = 0b10; // j gets the value 2.
j = 5; // j gets the value 5. Previous value is overwritten.
k = j; // k gets the value 5.

The assignment operator has the lowest precedence, so the expression on the
right-hand side is evaluated before the assignment is done.

int i;
i = 5; // i gets the value 5.
i = i + 1; // i gets the value 6. + has higher precedence than =.
i = 20 - i * 2; // i gets the value 8: (20 - (i * 2))

Assigning References

Copying reference values by assignment creates aliases. Below, the variable pizza1
is a reference to a pizza that is hot and spicy, and pizza2 is a reference to a pizza that
is sweet and sour.

Pizza pizza1 = new Pizza("Hot&Spicy");
Pizza pizza2 = new Pizza("Sweet&Sour");

pizza2 = pizza1;

56 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 56 Friday, December 2, 2022 4:24 PM
Assigning pizza1 to pizza2 means that pizza2 now refers to the same pizza as pizza1,
the hot and spicy one. After the assignment, these variables are aliases and either
one can be used to manipulate the hot and spicy Pizza object.

Assigning a reference value does not create a copy of the source object denoted by
the reference variable on the right-hand side. It merely assigns the reference value
of the variable on the right-hand side to the variable on the left-hand side so that
they denote the same object. Reference assignment also does not copy the state of
the source object to any object denoted by the reference variable on the left-hand
side.

A more detailed discussion of reference assignment can be found in §5.8, p. 266.

Multiple Assignments

The assignment statement is an expression statement, which means that application
of the binary assignment operator returns the value of the expression on the
right-hand side.

int j, k;
j = 10; // (1) j gets the value 10, which is returned
k = j; // (2) k gets the value of j, which is 10, and this value is returned

The value returned by an assignment statement is usually discarded, as in the two
assignment statements above. We can verify the value returned as follows:

System.out.println(j = 10); // j gets the value 10, which is printed.
System.out.println(k = j); // k gets the value of j, i.e. 10, which is printed

The two assignments (1) and (2) above can be written as multiple assignments,
illustrating the right associativity of the assignment operator:

k = j = 10; // (k = (j = 10))

Multiple assignments are equally valid with references:

Pizza pizzaOne, pizzaTwo;
pizzaOne = pizzaTwo = new Pizza("Supreme"); // Aliases

The following example shows the effect of operand evaluation order:

int[] a = {10, 20, 30, 40, 50}; // An array of int (§3.9, p. 120)
int index = 4;
a[index] = index = 2; // (1)

What is the value of index, and which array element a[index] is assigned a value in
the multiple assignment statement at (1)? The evaluation proceeds as follows:

a[index] = index = 2;
a[4] = index = 2;
a[4] = (index = 2); // index gets the value 2. = is right associative.
a[4] = 2; // The value of a[4] is changed from 50 to 2.

The following declaration statement will not compile, as the variable v2 has not
been declared:

2.7: THE SIMPLE ASSIGNMENT OPERATOR = 57

JSE17_OCP.book Page 57 Friday, December 2, 2022 4:24 PM
int v1 = v2 = 2016; // Only v1 is declared. Compile-time error!

Type Conversions in an Assignment Context

If the target and the source have the same type in an assignment, then obviously
the source and the target are assignment compatible and the source value need not
be converted. Otherwise, if a widening primitive conversion is permissible, then
the widening conversion is applied implicitly; that is, the source type is converted
to the target type in an assignment context.

// Widening Primitive Conversions
int smallOne = 1234; // No widening necessary.
long bigOne = 2020; // Widening: int to long.
double largeOne = bigOne; // Widening: long to double.
double hugeOne = (double) bigOne; // Cast redundant but allowed.

A widening primitive conversion can result in loss of precision. In the next example,
the precision of the least significant bits of the long value may be lost when it is con-
verted to a float value:

long bigInteger = 98765432112345678L;
float fpNum = bigInteger; // Widening but loss of precision: 9.8765436E16

Additionally, implicit narrowing primitive conversions on assignment can occur in
cases where all of the following conditions are fulfilled:

• The source is a constant expression of type byte, short, char, or int.

• The target type is of type byte, short, or char.
• The value of the source is determined to be in the range of the target type at

compile time.

A constant expression is an expression that denotes either a primitive or a String
literal; it is composed of operands that can be only literals or constant variables, and
operators that can be evaluated only at compile time (e.g., arithmetic and numeri-
cal comparison operators, but not increment/decrement operators and method
calls). A constant variable is a final variable of either a primitive type or the String
type that is initialized with a constant expression.

int result = 100; // Not a constant variable. Not declared final.
final char finalGrade = 'A'; // Constant variable. ’A’
System.out.printf("%d%n%s%n%d%n%.2f%n%b%n%d%n%d%n",
 2022, // Constant expression. 2022
 "Trust " + "me!", // Constant expression. "Trust me"
 2 + 3 * 4, // Constant expression. 14
 Math.PI * Math.PI * 10.0, // Constant expression. 98.70
 finalGrade == 'A', // Constant expression. true
 Math.min(2020, 2021), // Not constant expression. Method call.
 ++result // Not constant expression. Increment operator.
);

Here are some examples that illustrate how the conditions mentioned previously
affect narrowing primitive conversions:

58 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 58 Friday, December 2, 2022 4:24 PM
// Conditions fulfilled for implicit narrowing primitive conversions.
short s1 = 10; // int value in range.
short s2 = 'a'; // char value in range.
char c1 = 32; // int value in range.
char c2 = (byte)35; // byte value in range. (int value in range, without cast.)
byte b1 = 40; // int value in range.
byte b2 = (short)40; // short value in range. (int value in range, without cast.)
final int i1 = 20; // Constant variable
byte b3 = i1; // final value of i1 in range.

All other narrowing primitive conversions will produce a compile-time error on
assignment and will explicitly require a cast. Here are some examples:

// Conditions not fulfilled for implicit narrowing primitive conversions.
// A cast is required.
int i2 = -20; // i2 is not a constant variable. i2 is not final.
final int i3 = i2; // i3 is not a constant variable, since i2 is not.
final int i4 = 200; // i4 is a constant variable.
final int i5; // i5 is not a constant variable.
short s3 = (short) i2; // Not constant expression.
char c3 = (char) i3; // Final value of i3 not determinable at compile time.
char c4 = (char) i2; // Not constant expression.
byte b4 = (byte) 128; // int value not in range.
byte b5 = (byte) i4; // Value of constant variable i4 is not in range.
i5 = 100; // Initialized at runtime.
short s4 = (short) i5; // Final value of i5 not determinable at compile time.

Floating-point values are truncated when cast to integral values.

// The value is truncated to fit the size of the target type.
float huge = (float) 1.7976931348623157d; // double to float.
long giant = (long) 4415961481999.03D; // (1) double to long.
int big = (int) giant; // (2) long to int.
short small = (short) big; // (3) int to short.
byte tiny = (byte) small; // (4) short to byte.
char symbol = (char) 112.5F; // (5) float to char.

Table 2.19 shows how the values are truncated for assignments from (1) to (5).

The discussion of numeric assignment conversions also applies to numeric param-
eter values at method invocation (§3.10, p. 129), except for the narrowing conver-
sions, which always require a cast.

Table 2.19 Examples of Truncated Values

Binary Decimal

0000000000000000000001000000010000101011110100001100001100001111 4415961481999 (1)

00101011110100001100001100001111 735101711 (2)

1100001100001111 -15601 (3)

00001111 15 (4)

0000000001110000 'p' (5)

2.8: ARITHMETIC OPERATORS: *, /, %, +, - 59

JSE17_OCP.book Page 59 Friday, December 2, 2022 4:24 PM
The following examples illustrate boxing and unboxing in an assignment context:

Boolean boolRef = true; // Boxing.
Byte bRef = 2; // Constant in range: narrowing, then boxing.
// Byte bRef2 = 257; // Constant not in range. Compile-time error!

short s = 10; // Narrowing from int to short.
// Integer iRef1 = s; // short not assignable to Integer.
Integer iRef3 = (int) s; // Explicit widening with cast to int and boxing

boolean bv1 = boolRef; // Unboxing.
byte b1 = bRef; // Unboxing.
int iVal = bRef; // Unboxing and widening.

Integer iRefVal = null; // Always allowed.
// int j = iRefVal; // NullPointerException at runtime.
if (iRef3 != null) iVal = iRef3; // Avoids exception at runtime.

2.8 Arithmetic Operators: *, /, %, +, -

Arithmetic operators are used to construct mathematical expressions as in algebra.
Their operands are of a numeric type (which includes the char type).

Floating-point operations are now consistently strict; that is, they are executed in
accordance with the IEEE-754 32-bit (float) and 64-bit (double) standard formats.
This means that floating-point arithmetic operations give the same results on any
JVM implementation. The keyword strictfp used to enforce strict behavior for
floating-point arithmetic is now obsolete and should not be used in new code.

Arithmetic Operator Precedence and Associativity

In Table 2.20, the precedence of the operators appears in decreasing order, starting
from the top row, which has the highest precedence. Unary subtraction has higher
precedence than multiplication. The operators in the same row have the same prece-
dence. Binary multiplication, division, and remainder operators have the same
precedence. The unary operators have right associativity, and the binary operators
have left associativity.

Table 2.20 Arithmetic Operators

Unary + Plus - Minus

Binary * Multiplication / Division % Remainder

+ Addition - Subtraction

60 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 60 Friday, December 2, 2022 4:24 PM
Evaluation Order in Arithmetic Expressions

Java guarantees that the operands are fully evaluated from left to right before an
arithmetic binary operator is applied. If evaluation of an operand results in an
error, the subsequent operands will not be evaluated.

In the expression a + b * c, the operand a will always be fully evaluated before the
operand b, which will always be fully evaluated before the operand c. However,
the multiplication operator * will be applied before the addition operator +,
respecting the precedence rules. Note that a, b, and c are arbitrary arithmetic
expressions that have been determined to be the operands of the operators.

Example 2.1, p. 54, illustrates the evaluation order and precedence rules for arith-
metic expressions.

Range of Numeric Values

As we have seen, all numeric types have a range of valid values (p. 41). This range
is given by the constants named MAX_VALUE and MIN_VALUE, which are defined in each
numeric wrapper type.

The arithmetic operators are overloaded, meaning that the operation of an opera-
tor varies depending on the type of its operands. Floating-point arithmetic is per-
formed if any operand of an operator is of floating-point type; otherwise, integer
arithmetic is performed.

Values that are out of range or are the results of invalid expressions are handled
differently depending on whether integer or floating-point arithmetic is per-
formed.

Integer Arithmetic

Integer arithmetic always returns a value that is in range, except in the case of inte-
ger division by zero and remainder by zero, which cause an ArithmeticException
(see the later discussion of the division operator / and the remainder operator %).
A valid value does not necessarily mean that the result is correct, as demonstrated
by the following examples:

int tooBig = Integer.MAX_VALUE + 1; // -2147483648 which is Integer.MIN_VALUE.
int tooSmall = Integer.MIN_VALUE - 1; // 2147483647 which is Integer.MAX_VALUE.

These results should be values that are out of range. However, integer arithmetic
wraps around the result if it is out of range; that is, the result is reduced modulo in
the range of the result type. To avoid wrapping around out-of-range values, pro-
grams should use either explicit checks or a wider type. If the type long were used
in the earlier examples, the results would be correct in the long range:

long notTooBig = Integer.MAX_VALUE + 1L; // 2147483648L in range.
long notTooSmall = Integer.MIN_VALUE - 1L; // -2147483649L in range.

2.8: ARITHMETIC OPERATORS: *, /, %, +, - 61

JSE17_OCP.book Page 61 Friday, December 2, 2022 4:24 PM
Floating-Point Arithmetic

Certain floating-point operations result in values that are out of range. Typically,
adding or multiplying two very large floating-point numbers can result in an
out-of-range value that is represented by infinity (Figure 2.3). Attempting float-
ing-point division by zero also returns infinity. The following examples show how
this value is printed as signed infinity:

System.out.println(4.0 / 0.0); // Prints: Infinity
System.out.println(-4.0 / 0.0); // Prints: -Infinity

Both positive and negative infinity represent overflow to infinity; that is, the value
is too large to be represented as a double or float (Figure 2.3). Signed infinity is rep-
resented by the named constants POSITIVE_INFINITY and NEGATIVE_INFINITY in the
wrapper classes java.lang.Float and java.lang.Double. A value can be compared
with these constants to detect overflow.

Floating-point arithmetic can also result in underflow to zero, when the value is too
small to be represented as a double or float (Figure 2.3). Underflow occurs in the
following situations:

• The result is between Double.MIN_VALUE (or Float.MIN_VALUE) and zero, as with
the result of (5.1E-324 - 4.9E-324). Underflow then returns positive zero 0.0
(or 0.0F).

• The result is between -Double.MIN_VALUE (or -Float.MIN_VALUE) and zero, as with
the result of (-Double.MIN_VALUE * 1E-1). Underflow then returns negative zero
-0.0 (or -0.0F).

Negative zero compares equal to positive zero; in other words, (-0.0 == 0.0) is true.

Figure 2.3 Overflow and Underflow in Floating-Point Arithmetic

Positive zero
Negative zero

Infinity

-Infinity

Overflow

Underflow

(Not drawn to scale.)

Out of range
Double.MIN_VALUE

-Double.MIN_VALUE

Double.NEGATIVE_INFINITY

Double.POSITIVE_INFINITY

Double.MAX_VALUE

-Double.MAX_VALUE

 0.0
-0.0

[

]
..

.
..

.

[]
...

...

62 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 62 Friday, December 2, 2022 4:24 PM
Certain operations have no mathematical result, and are represented by NaN
(Not-a-Number). For example, calculating the square root of –1 results in a NaN.
Another example is (floating-point) dividing zero by zero:

System.out.println(0.0 / 0.0); // Prints: NaN

NaN is represented by the constant named NaN in the wrapper classes
java.lang.Float and java.lang.Double. Any operation involving NaN produces
NaN. Any comparison (except inequality, !=) involving NaN and any other value
(including NaN) returns false. An inequality comparison of NaN with another
value (including NaN) always returns true. However, the recommended way of
checking a value for NaN is to use the static method isNaN() defined in both wrap-
per classes, java.lang.Float and java.lang.Double.

Unary Arithmetic Operators: -, +

The unary operators have the highest precedence of all the arithmetic operators.
The unary operator - negates the numeric value of its operand. The following
example illustrates the right associativity of the unary operators:

int value = - -10; // (-(-10)) is 10

Notice the blank space needed to separate the unary operators; without the blank
space, these would be interpreted as the decrement operator -- (p. 70), which
would result in a compile-time error because a literal cannot be decremented. The
unary operator + has no effect on the evaluation of the operand value.

Multiplicative Binary Operators: *, /, %

Multiplication Operator: *

The multiplication operator * multiplies two numbers, as one would expect.

int sameSigns = -4 * -8; // result: 32
double oppositeSigns = 4 * -8.0; // Widening of int 4 to double. result: -32.0
int zero = 0 * -0; // result: 0

Division Operator: /

The division operator / is overloaded. If its operands are integral, the operation
results in integer division.

int i1 = 4 / 5; // result: 0
int i2 = 8 / 8; // result: 1
double d1 = 12 / 8; // result: 1.0; integer division, then widening conversion

Integer division always returns the quotient as an integer value; that is, the result
is truncated toward zero. Note that the division performed is integer division if the
operands have integral values, even if the result will be stored in a floating-point
type. The integer value is subjected to a widening conversion in the assignment
context.

2.8: ARITHMETIC OPERATORS: *, /, %, +, - 63

JSE17_OCP.book Page 63 Friday, December 2, 2022 4:24 PM
An ArithmeticException is thrown when integer division with zero is attempted,
meaning that integer division by zero is an illegal operation.

If any of the operands is a floating-point type, the operation performs floating-point
division, where relevant operand values undergo binary numeric promotion:

double d2 = 4.0 / 8; // result: 0.5
double d3 = 8 / 8.0; // result: 1.0
float d4 = 12.0F / 8; // result: 1.5F

double result1 = 12.0 / 4.0 * 3.0; // ((12.0 / 4.0) * 3.0) which is 9.0
double result2 = 12.0 * 3.0 / 4.0; // ((12.0 * 3.0) / 4.0) which is 9.0

Remainder Operator: %

In mathematics, when we divide a number (the dividend) by another number (the
divisor), the result can be expressed in terms of a quotient and a remainder. For exam-
ple, when 7 is divided by 5, the quotient is 1 and the remainder is 2. The remainder
operator % returns the remainder of the division performed on the operands.

int quotient = 7 / 5; // Integer division operation: 1
int remainder = 7 % 5; // Integer remainder operation: 2

For integer remainder operation, where only integer operands are involved, evalua-
tion of the expression (x % y) always satisfies the following relation:

x == (x / y) * y + (x % y)

In other words, the right-hand side yields a value that is always equal to the value
of the dividend. The following examples show how we can calculate the remainder
so that this relation is satisfied:

Calculating (7 % 5):

7 == (7 / 5) * 5 + (7 % 5)
 == (1) * 5 + (7 % 5)
 == 5 + (7 % 5)
2 == (7 % 5) (7 % 5) is equal to 2

Calculating (7 % –5):

7 == (7 / -5) * -5 + (7 % -5)
 == (-1) * -5 + (7 % -5)
 == 5 + (7 % -5)
2 == (7 % -5) (7 % –5) is equal to 2

Calculating (–7 % 5):

-7 == (-7 / 5) * 5 + (-7 % 5)
 == (-1) * 5 + (-7 % 5)
 == -5 + (-7 % 5)
-2 == (-7 % 5) (–7 % 5) is equal to –2

Calculating (–7 % –5):

-7 == (-7 / -5) * -5 + (-7 % -5)

64 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 64 Friday, December 2, 2022 4:24 PM
 == (1) * -5 + (-7 % -5)
 == -5 + (-7 % -5)
-2 == (-7 % -5) (–7 % –5) is equal to –2

The remainder can be negative only if the dividend is negative, and the sign of the
divisor is irrelevant. A shortcut to evaluating the remainder involving negative
operands is the following: Ignore the signs of the operands, calculate the remain-
der, and negate the remainder if the dividend is negative.

int r0 = 7 % 7; // 0
int r1 = 7 % 5; // 2
long r2 = 7L % -5L; // 2L
int r3 = -7 % 5; // -2
long r4 = -7L % -5L; // -2L
boolean relation = -7L == (-7L / -5L) * -5L + r4; // true

An ArithmeticException is thrown if the divisor evaluates to zero.

Note that the remainder operator accepts not only integral operands, but also
floating-point operands. The floating-point remainder r is defined by the relation

r == a – (b * q)

where a and b are the dividend and the divisor, respectively, and q is the integer quo-
tient of (a/b). The following examples illustrate a floating-point remainder operation:

double dr0 = 7.0 % 7.0; // 0.0
float fr1 = 7.0F % 5.0F; // 2.0F
double dr1 = 7.0 % -5.0; // 2.0
float fr2 = -7.0F % 5.0F; // -2.0F
double dr2 = -7.0 % -5.0; // -2.0
boolean fpRelation = dr2 == (-7.0) - (-5.0) * (long)(-7.0 / -5.0); // true
float fr3 = -7.0F % 0.0F; // NaN

Additive Binary Operators: +, -

The addition operator + and the subtraction operator - behave as their names
imply: They add and subtract values, respectively. The binary operator + also acts
as string concatenation if any of its operands is a string (p. 68).

Additive operators have lower precedence than all the other arithmetic operators.
Table 2.21 includes examples that show how precedence and associativity are used
in arithmetic expression evaluation.

Table 2.21 Examples of Arithmetic Expression Evaluation

Arithmetic expression Evaluation Result when printed

3 + 2 - 1 ((3 + 2) - 1) 4

2 + 6 * 7 (2 + (6 * 7)) 44

2.8: ARITHMETIC OPERATORS: *, /, %, +, - 65

JSE17_OCP.book Page 65 Friday, December 2, 2022 4:24 PM
Numeric Promotions in Arithmetic Expressions

Unary numeric promotion is applied to the single operand of the unary arithmetic
operators - and +. When a unary arithmetic operator is applied to an operand
whose type is narrower than int, the operand is promoted to a value of type int,
with the operation resulting in an int value. If the conditions for implicit narrow-
ing conversion are not fulfilled (p. 57), assigning the int result to a variable of a
narrower type will require a cast. This is demonstrated by the following example,
where the byte operand b is promoted to an int in the expression (-b):

byte b = 3; // int literal in range. Narrowing conversion.
b = (byte) -b; // Cast required on assignment.

Binary numeric promotion is applied to operands of binary arithmetic operators.
Its application leads to type promotion for the operands, as explained in §2.4, p. 50.
The result is of the promoted type, which is always type int or wider. For the
expression at (1) in Example 2.2, numeric promotions proceed as shown in
Figure 2.4. Note the integer division performed in evaluating the subexpression
(c / s).

Example 2.2 Numeric Promotion in Arithmetic Expressions

public class NumPromotion {
 public static void main(String[] args) {
 byte b = 32;
 char c = 'z'; // Unicode value 122 (\u007a)
 short s = 256;
 int i = 10000;
 float f = 3.5F;
 double d = 0.5;
 double v = (d * i) + (f * -b) - (c / s); // (1) 4888.0D
 System.out.println("Value of v: " + v);
 }

-5 + 7 - -6 (((-5) + 7) - (-6)) 8

2 + 4 / 5 (2 + (4 / 5)) 2

13 % 5 (13 % 5) 3

11.5 % 2.5 (11.5 % 2.5) 1.5

10 / 0 ArithmeticException

2 + 4.0 / 5 (2.0 + (4.0 / 5.0)) 2.8

4.0 / 0.0 (4.0 / 0.0) Infinity

-4.0 / 0.0 ((-4.0) / 0.0) -Infinity

0.0 / 0.0 (0.0 / 0.0) NaN

Table 2.21 Examples of Arithmetic Expression Evaluation (Continued)

Arithmetic expression Evaluation Result when printed

66 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 66 Friday, December 2, 2022 4:24 PM
}

Output from the program:

Value of v: 4888.0

In addition to the binary numeric promotions in arithmetic expression evaluation,
the resulting value can undergo an implicit widening conversion if assigned to a
variable. In the first two declaration statements that follow, only assignment con-
versions take place. Numeric promotions take place in the evaluation of the
right-hand expression in the other declaration statements.

Byte b = 10; // Constant in range: narrowing and boxing on assignment.
Short s = 20; // Constant in range: narrowing and boxing on assignment.
char c = 'z'; // 122 (\u007a)
int i = s * b; // Values in s and b promoted to int: unboxing, widening.
long n = 20L + s; // Value in s promoted to long: unboxing, widening.
float r = s + c; // Value in s is unboxed. This short value and the char
 // value in c are promoted to int, followed by implicit
 // widening conversion of int to float on assignment.
double d = r + i; // Value in i promoted to float, followed by implicit
 // widening conversion of float to double on assignment.

Figure 2.4 Numeric Promotion in Arithmetic Expressions

float byte

int

float

float

double

double int

double

double

char short

int

int

double

int

double

double

(d * i)

Unary numeric promotion

Binary numeric promotion

(f * -b) (c / s) + -

2.8: ARITHMETIC OPERATORS: *, /, %, +, - 67

JSE17_OCP.book Page 67 Friday, December 2, 2022 4:24 PM
Binary numeric promotion for operands of binary operators implies that each
operand of a binary operator is promoted to type int or a broader numeric type, if
necessary. As with unary operators, care must be exercised in assigning the value
resulting from applying a binary operator to operands of these types.

short h = 40; // OK: int converted to short. Implicit narrowing.
h = h + 2; // Error: cannot assign an int to short.

The value of the expression h + 2 is of type int. Although the result of the expres-
sion is in the range of short, this cannot be determined at compile time. The assign-
ment requires a cast.

h = (short) (h + 2); // OK

Notice that applying the cast operator (short) to the individual operands does not
work:

h = (short) h + (short) 2; // The resulting value should be cast.

Neither does the following approach, which results in a compile-time error:

h = (short) h + 2; // The resulting value should be cast.

In this case, binary numeric promotion leads to an int value as the result of evalu-
ating the expression on the right-hand side, and therefore, requires an additional
cast to narrow it to a short value.

Arithmetic Compound Assignment Operators: *=, /=, %=, +=, -=

A compound assignment operator has the following syntax:

variable op= expression

and the following semantics:

variable = (type) ((variable) op (expression))

The type of the variable is type and the variable is evaluated only once. Note the cast
and the parentheses implied in the semantics. Here op= can be any of the com-
pound assignment operators specified in Table 2.18. The compound assignment
operators have the lowest precedence of all the operators in Java, allowing the
expression on the right-hand side to be evaluated before the assignment. Table 2.22
defines the arithmetic compound assignment operators.

Table 2.22 Arithmetic Compound Assignment Operators

Expression Given T as the numeric type of x, the expression is evaluated as:

x *= a x = (T) ((x) * (a))

x /= a x = (T) ((x) / (a))

x %= a x = (T) ((x) % (a))

x += a x = (T) ((x) + (a))

x -= a x = (T) ((x) - (a))

68 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 68 Friday, December 2, 2022 4:24 PM
The implied cast operator, (T), in the compound assignments becomes necessary
when the result must be narrowed to the target type. This is illustrated by the fol-
lowing examples:

int i = 2;
i *= i + 4; // (1) Evaluated as i = (int) ((i) * (i + 4)).

Integer iRef = 2;
iRef *= iRef + 4; // (2) Evaluated as iRef = (Integer) ((iRef) * (iRef + 4)).

byte b = 2;
b += 10; // (3) Evaluated as b = (byte) (b + 10).
b = b + 10; // (4) Will not compile. Cast is required.

At (1) the source int value is assigned to the target int variable, and the cast oper-
ator (int) in this case is an identity conversion (i.e., conversion from a type to the
same type). Such casts are permitted. The assignment at (2) entails unboxing to
evaluate the expression on the right-hand side, followed by boxing to assign the
int value. However, at (3), as the source value is an int value because the byte value
in b is promoted to int to carry out the addition, assigning it to a target byte variable
requires an implicit narrowing conversion. The situation at (4) with simple assign-
ment will not compile because implicit narrowing conversion is not applicable.

The variable is evaluated only once in the expression, not twice, as one might infer
from the definition of the compound assignment operator. In the following assign-
ment, a[i] is evaluated just once:

int[] a = new int[] { 2020, 2030, 2040 };
int i = 2;
a[i] += 1; // Evaluates as a[2] = a[2] + 1, and a[2] gets the value 2041.

Implicit narrowing conversions are also applied to increment and decrement oper-
ators (p. 70).

Boolean logical compound assignment operators are covered in §2.14, p. 79.

2.9 The Binary String Concatenation Operator +

The binary operator + is overloaded in the sense that the operation performed is
determined by the type of the operands. When one of the operands is a String object,
a string concatenation is performed rather than numeric addition. String concate-
nation results in a newly created String object in which the characters in the text
representation of the left-hand operand precede the characters in the text represen-
tation of the right-hand operand. It might be necessary to perform a string
conversion on the non-String operand before the string concatenation can be per-
formed. The String class is discussed in §8.4, p. 449.

A string conversion is performed on the non-String operand as follows:

• For an operand of a primitive data type, its value is converted to a text repre-
sentation.

2.9: THE BINARY STRING CONCATENATION OPERATOR + 69

JSE17_OCP.book Page 69 Friday, December 2, 2022 4:24 PM
• For all reference value operands, a text representation is constructed by calling
the no-argument toString() method on the referred object. Most classes over-
ride this method from the Object class so as to provide a more meaningful text
representation of their objects. Discussion of the toString() method can be
found in §8.2, p. 435.

• Values like true, false, and null have text representations that correspond to
their names. A reference variable with the value null also has the text represen-
tation "null" in this context.

The operator + is left associative and has the same precedence level as the additive
operators, whether it is performed as a string concatenation or as a numeric
addition.

String strVal = "" + 2020; // (1) "2020"
String theName = " Uranium";
theName = " Pure" + theName; // (2) " Pure Uranium"
String trademark1 = 100 + "%" + theName; // (3) "100% Pure Uranium"

Since the + operator is left-associative, the evaluation at (3) proceeds as follows:
The int value 100 is concatenated with the string literal "%", followed by concate-
nation with the contents of the String object referred to by the theName reference.

Note that using the character literal '%' instead of the string literal "%" in line (2)
does not give the same result:

String trademark2 = 100 + '%' + theName; // (4) "137 Pure Uranium"

Integer addition is performed by the first + operator: 100 + '%'; that is, (100 + 37).

Caution should be exercised because the + operator might not be applied as
intended, as shown by the following example:

System.out.println("We can put two and two together and get " + 2 + 2); // (5)

This statement prints "We can put two and two together and get 22". String concate-
nation proceeds from left to right: The String literal is concatenated with the first
int literal 2, followed by concatenation with the second int literal 2. Both occur-
rences of the + operator are treated as string concatenation. To convey the intended
meaning of the sentence, parentheses are necessary:

System.out.println("We can put two and two together and get " + (2 + 2)); // (6)

This statement prints "We can put two and two together and get 4", since the paren-
theses enforce integer addition in the expression (2 + 2) before string concatena-
tion is performed with the contents of the String operand.

The following statement will print the correct result, even without the parentheses,
because the * operator has higher precedence than the + operator:

System.out.println("2 * 2 = " + 2 * 2); // (7) 2 * 2 = 4

Creation of temporary String objects might be necessary to store the results of per-
forming successive string concatenations in a String-valued expression. For a

70 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 70 Friday, December 2, 2022 4:24 PM
String-valued constant expression ((1), (5), (6), and (7) in the preceding examples),
the compiler computes such an expression at compile time, and the result is treated
as a string literal in the program. The compiler uses a string builder to avoid the
overhead of temporary String objects when applying the string concatenation
operator (+) in String-valued non-constant expressions ((2), (3), and (4) in the pre-
ceding examples), as explained in §8.5, p. 480.

2.10 Variable Increment and Decrement Operators: ++, --

Variable increment (++) and decrement (--) operators come in two flavors: prefix
and postfix. These unary operators have the side effect of changing the value of the
arithmetic operand, which must evaluate to a variable. Depending on the operator
used, the variable is either incremented by 1 or decremented by 1.

These operators cannot be applied to a variable that is declared final and that has
been initialized, as the side effect would change the value in such a variable.

These operators are useful for updating variables in loops where only the side
effect of the operator is of interest.

The Increment Operator ++

The prefix increment operator has the following semantics: ++i adds 1 to the value
in i, and stores the new value in i. It returns the new value as the value of the
expression. It is equivalent to the following statements:

i += 1;
result = i;
return result;

The postfix increment operator has the following semantics: j++ adds 1 to the value
in j, and stores the new value in j. It returns the original value that was in j as the
value of the expression. It is equivalent to the following statements:

result = j;
j += 1;
return result;

The Decrement Operator --

The prefix decrement operator has the following semantics: --i subtracts 1 from
the value of i, and stores the new value in i. It returns the new value as the value
of the expression. It is equivalent to the following statements:

i -= 1;
result = i;
return result;

2.10: VARIABLE INCREMENT AND DECREMENT OPERATORS: ++, -- 71

JSE17_OCP.book Page 71 Friday, December 2, 2022 4:24 PM
The postfix decrement operator has the following semantics: j-- subtracts 1 from
the value of j, and stores the new value in j. It returns the original value that was
in j as the value of the expression. It is equivalent to the following statements:

result = j;
j -= 1;
return result;

This behavior of decrement and increment operators applies to any variable whose
type is a numeric primitive type or its corresponding numeric wrapper type. Neces-
sary numeric promotions are performed on the value 1 and the value of the variable.
Before the new value is assigned to the variable, it is subjected to any narrowing
primitive conversion and/or boxing that might be necessary.

Here are some examples that illustrate the behavior of increment and decrement
operators:

// (1) Prefix order: increment/decrement operand before use.
int i = 10;
int k = ++i + --i; // ((++i) + (--i)). k gets the value 21 and i becomes 10.
--i; // Only side effect utilized. i is 9. (expression statement)

Integer iRef = 11; // Boxing on assignment
--iRef; // Only side effect utilized. iRef refers to an Integer
 // object with the value 10. (expression statement)
k = ++iRef + --iRef;// ((++iRef) + (--iRef)). k gets the value 21 and
 // iRef refers to an Integer object with the value 10.

// (2) Postfix order: increment/decrement operand after use.
long j = 10;
long n = j++ + j--; // ((j++) + (j--)). n gets the value 21L and j becomes 10L.
j++; // Only side effect utilized. j is 11L. (expression statement)

An increment or decrement operator, together with its operand, can be used as an
expression statement (§3.3, p. 101).

Execution of the assignment in the second declaration statement under (1) pro-
ceeds as follows:

k = ((++i) + (--i)) Operands are evaluated from left to right.
k = (11 + (--i)) Side effect: i += 1, i gets the value 11.
k = (11 + 10) Side effect: i -= 1, i gets the value 10.
k = 21

Execution of the expression statement --iRef; under (1) proceeds as follows:

• The value in the Integer object referred to by the reference iRef is unboxed,
resulting in the int value 11.

• The value 11 is decremented, resulting in the value 10.
• The value 10 is boxed in an Integer object, and this object’s reference value is

assigned to the reference iRef.
• The int value 10 of the expression statement is discarded.

72 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 72 Friday, December 2, 2022 4:24 PM
Expressions where variables are modified multiple times during the evaluation should
be avoided because the order of evaluation is not always immediately apparent.

We cannot associate increment and decrement operators. Given that a is a variable,
we cannot write (++(++a)). The reason is that any operand to ++ must evaluate to a
variable, but the evaluation of (++a) results in a value.

In the next example, both binary numeric promotion and an implicit narrowing
conversion are performed to achieve the side effect of modifying the value of the
operand. The int value of the expression (++b) (i.e., 11) is assigned to the int vari-
able i. The side effect of incrementing the value of the byte variable b requires
binary numeric promotion to perform int addition, followed by an implicit nar-
rowing conversion of the int value to byte to assign the value to variable b.

byte b = 10;
int i = ++b; // i is 11, and so is b.

The following example illustrates applying the increment operator to a float-
ing-point operand. The side effect of the ++ operator is overwritten by the assign-
ment.

double x = 4.5;
x = x + ++x; // x gets the value 10.0.

Review Questions

2.1 Which of the following is not a legal comment in Java?
Select the one correct answer.
(a) /* // */
(b) /* */ //
(c) // /* */
(d) /* /* */
(e) /* /* */ */
(f) // //

2.2 What will be the result of compiling and running the following program?

public class Assignment {
 public static void main(String[] args) {
 int a, b, c;
 b = 10;
 a = b = c = 20;
 System.out.println(a);
 }
}

Select the one correct answer.
(a) The code will fail to compile because the compiler will report that the variable

c in the multiple assignment statement a = b = c = 20; has not been
initialized.

2.10: VARIABLE INCREMENT AND DECREMENT OPERATORS: ++, -- 73

JSE17_OCP.book Page 73 Friday, December 2, 2022 4:24 PM
(b) The code will fail to compile because the multiple assignment statement a = b
= c = 20; is illegal.

(c) The code will compile and print 10 at runtime.
(d) The code will compile and print 20 at runtime.

2.3 What will be the result of compiling and running the following program?

public class MyClass {
 public static void main(String[] args) {
 String a, b, c;
 c = new String("mouse");
 a = new String("cat");
 b = a;
 a = new String("dog");
 c = b;

 System.out.println(c);
 }
}

Select the one correct answer.
(a) The program will fail to compile.
(b) The program will print mouse at runtime.
(c) The program will print cat at runtime.
(d) The program will print dog at runtime.
(e) The program will randomly print either cat or dog at runtime.

2.4 Which of the following expressions evaluate to a floating-point value?
Select the three correct answers.
(a) 2.0 * 3
(b) 2 * 3
(c) 2/3 + 5/7
(d) 2.4 + 1.6
(e) 0x10 * 1L * 300.0

2.5 What is the value of the expression (1 / 2 + 3 / 2 + 0.1)?
Select the one correct answer.
(a) 1
(b) 1.1
(c) 1.6
(d) 2
(e) 2.1

2.6 What is the value of evaluating the following expression: (- -1-3 * 10 / 5-1)?
Select the one correct answer.
(a) –8
(b) –6
(c) 7
(d) 8
(e) 10
(f) None of the above

74 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 74 Friday, December 2, 2022 4:24 PM
2.7 What is the result of compiling and running the following program?

public class Prog1 {
 public static void main(String[] args) {
 int k = 1;
 int i = ++k + k++ + + k; // (1)
 System.out.println(i);
 }
}

Select the one correct answer.
(a) The program will fail to compile because of errors in the expression at (1).
(b) The program will print the value 3 at runtime.
(c) The program will print the value 4 at runtime.
(d) The program will print the value 7 at runtime.
(e) The program will print the value 8 at runtime.

2.8 Which is the first line that will cause a compile-time error in the following program?

public class MyClass {
 public static void main(String[] args) {
 char c;
 int i;
 c = 'a'; // (1)
 i = c; // (2)
 i++; // (3)
 c = i; // (4)
 c++; // (5)
 }
}

Select the one correct answer.
(a) (1)
(b) (2)
(c) (3)
(d) (4)
(e) (5)
(f) None of the above. The compiler will not report any errors.

2.9 What will be the result of compiling and running the following program?

public class EvaluationOrder {
 public static void main(String[] args) {
 int[] array = { 4, 8, 16 };
 int i = 1;
 array[++i] = --i;
 System.out.println(array[0] + array[1] + array[2]);
 }
}

Select the one correct answer.
(a) 13
(b) 14

2.11: BOOLEAN EXPRESSIONS 75

JSE17_OCP.book Page 75 Friday, December 2, 2022 4:24 PM
(c) 20
(d) 21
(e) 24

2.11 Boolean Expressions

As the name implies, a boolean expression has the boolean data type and can only
evaluate to the value true or false. Boolean expressions, when used as condition-
als in control statements, allow the program flow to be controlled during
execution.

Boolean expressions can be formed using relational operators (p. 75), equality opera-
tors (p. 76), boolean logical operators (p. 79), conditional operators (p. 81), the assign-
ment operator (p. 55), and the instanceof operator (§5.11, p. 274).

2.12 Relational Operators: <, <=, >, >=

Given that a and b represent numeric expressions, the relational (also called
comparison) operators are defined as shown in Table 2.23.

All relational operators are binary operators and their operands are numeric expres-
sions. Binary numeric promotion is applied to the operands of these operators. The
evaluation results in a boolean value. Relational operators have lower precedence
than arithmetic operators, but higher than that of the assignment operators.

double hours = 45.5;
Double time = 18.0; // Boxing of double value.
boolean overtime = hours >= 35; // true. Binary numeric promotion: double <-- int.
boolean beforeMidnight = time < 24.0;// true. Unboxing of value in time reference.
char letterA = 'A';

Table 2.23 Relational Operators

a < b a less than b?

a <= b a less than or equal to b?

a > b a greater than b?

a >= b a greater than or equal to b?

76 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 76 Friday, December 2, 2022 4:24 PM
boolean order = letterA < 'a'; // true. Binary numeric promotion: int <-- char.

Relational operators are nonassociative. Mathematical expressions like a ≤ b ≤ c
must be written using relational and boolean logical/conditional operators.

int a = 1, b = 7, c = 10;
boolean illegal = a <= b <= c; // (1) Illegal. Compile-time error!
boolean valid2 = a <= b && b <= c; // (2) OK.

Since relational operators have left associativity, the evaluation of the expression
a <= b <= c at (1) in these examples would proceed as follows: ((a <= b) <= c).
Evaluation of (a <= b) would yield a boolean value that is not permitted as an oper-
and of a relational operator; that is, (boolean value <= c) would be illegal.

2.13 Equality

We distinguish between primitive data value equality, object reference equality, and
object value equality.

The equality operators have lower precedence than the relational operators, but
higher precedence than the assignment operators.

Primitive Data Value Equality: ==, !=

Given that a and b represent operands of primitive data types, the primitive data
value equality operators are defined as shown in Table 2.24.

The equality operator == and the inequality operator != can be used to compare
primitive data values, including boolean values. Binary numeric promotion may be
applied to the non-boolean operands of these equality operators.

int year = 2002;
boolean isEven = year % 2 == 0; // true.
boolean compare = '1' == 1; // false. Binary numeric promotion applied.
boolean test = compare == false; // true.

Care must be exercised when comparing floating-point numbers for equality, as an
infinite number of floating-point values can be stored only as approximations in a
finite number of bits. For example, the expression (1.0 - 2.0/3.0 == 1.0/3.0)
returns false, although mathematically the result should be true.

Table 2.24 Primitive Data Value Equality Operators

a == b Determines whether a and b are equal—that is, have the same primitive value
(equality).

a != b Determines whether a and b are not equal—that is, do not have the same
primitive value (inequality).

2.13: EQUALITY 77

JSE17_OCP.book Page 77 Friday, December 2, 2022 4:24 PM
Analogous to the discussion for relational operators, mathematical expressions
like a = b = c must be written using relational and logical/conditional operators.
Since equality operators have left associativity, the evaluation of the expression
a == b == c would proceed as follows: ((a == b) == c). Evaluation of (a == b)
would yield a boolean value that is permitted as an operand of a data value equality
operator, but (boolean value == c) would be illegal if c had a numeric type. This
problem is illustrated in the following examples. The expression at (1) is illegal, but
those at (2) and (3) are legal.

int a, b, c;
a = b = c = 5;
boolean illegal = a == b == c; // (1) Illegal.
boolean valid2 = a == b && b == c; // (2) Legal.
boolean valid3 = a == b == true; // (3) Legal.

Object Reference Equality: ==, !=

The equality operator == and the inequality operator != can be applied to reference
variables to test whether they refer to the same object. Given that r and s are refer-
ence variables, the reference equality operators are defined as shown in Table 2.25.

The operands must be cast compatible: It must be possible to cast the reference
value of the one into the other’s type; otherwise a compile-time error will result.
Casting of references is discussed in §5.8, p. 266.

Pizza pizzaA = new Pizza("Sweet&Sour"); // new object
Pizza pizzaB = new Pizza("Sweet&Sour"); // new object
Pizza pizzaC = new Pizza("Hot&Spicy"); // new object

String banner = "Come and get it!"; // new object

boolean test = banner == pizzaA; // (1) Compile-time error
boolean test1 = pizzaA == pizzaB; // false
boolean test2 = pizzaA == pizzaC; // false

pizzaA = pizzaB; // Denote the same object; are aliases
boolean test3 = pizzaA == pizzaB; // true

The comparison banner == pizzaA at (1) is illegal because the String and Pizza types
are incompatible operand types as the reference value of one type cannot be cast to
the other type. The values of test1 and test2 are false because the three references
denote different objects, regardless of the fact that pizzaA and pizzaB are both sweet
and sour pizzas. The value of test3 is true because now both pizzaA and pizzaB
denote the same object.

Table 2.25 Reference Equality Operators

r == s Determines whether r and s are equal—that is, have the same reference value
and therefore refer to the same object (also called aliases) (equality).

r != s Determines whether r and s are not equal—that is, do not have the same
reference value and therefore refer to different objects (inequality).

78 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 78 Friday, December 2, 2022 4:24 PM
The equality and inequality operators are applied to object references to check
whether two references denote the same object. The state of the objects that the ref-
erences denote is not compared. This is the same as testing whether the references
are aliases, meaning that they denote the same object.

The null literal can be assigned to any reference variable, and the reference value
in a reference variable can be compared for equality with the null literal. The com-
parison can be used to avoid inadvertent use of a reference variable that does not
denote any object.

if (objRef != null) {
 // ... use objRef ...
}

Note that only when the type of both operands is either a reference type or the null
type do these operators test for object reference equality. Otherwise, they test for
primitive data equality (see also §8.3, p. 442). In the following code snippet, binary
numeric promotion involving unboxing is performed at (1):

Integer iRef = 10;
boolean b1 = iRef == null; // Object reference equality
boolean b2 = iRef == 10; // (1) Primitive data value equality
boolean b3 = null == 10; // Compile-time error!

Object Value Equality

The Object class provides the method public boolean equals(Object obj), which can
be overridden (§5.1, p. 200) to give the right semantics of object value equality. The
default implementation of this method in the Object class returns true only if the
object is compared with itself, as if the equality operator == had been used to com-
pare aliases of an object. Consequently, if a class does not override the semantics of
the equals() method from the Object class, object value equality is the same as
object reference equality.

Certain classes in the Java SE API override the equals() method, such as
java.lang.String and the wrapper classes for the primitive data types. For two
String objects, value equality means they contain identical character sequences.
For the wrapper classes, value equality means the wrapper objects have the same
primitive value and are of the same wrapper type (see also §8.3, p. 442).

// Equality for String objects means identical character sequences.
String movie1 = new String("The Revenge of the Exception Handler");
String movie2 = new String("High Noon at the Java Corral");
String movie3 = new String("The Revenge of the Exception Handler");
boolean test0 = movie1.equals(movie2); // false.
boolean test1 = movie1.equals(movie3); // true.

// Equality for wrapper classes means same type and same primitive value.
Boolean flag1 = true; // Boxing.
Boolean flag2 = false; // Boxing.
boolean test2 = flag1.equals("true"); // false. Not same type.
boolean test3 = flag1.equals(!flag2); // true. Same type and value.

2.14: BOOLEAN LOGICAL OPERATORS: !, ^, &, | 79

JSE17_OCP.book Page 79 Friday, December 2, 2022 4:24 PM
Integer iRef = 100; // Boxing.
Short sRef = 100; // Boxing <--- short <--- int
boolean test4 = iRef.equals(100); // true. Same type and value.
boolean test5 = iRef.equals(sRef); // false. Not same type.
boolean test6 = iRef.equals(3.14); // false. Not same type.

// The Pizza class does not override the equals() method, so we can use either
// equals() method inherited from the Object class or equality operator ==.
Pizza pizza1 = new Pizza("Veggies Delight");
Pizza pizza2 = new Pizza("Veggies Delight");
Pizza pizza3 = new Pizza("Cheese Delight");
boolean test7 = pizza1.equals(pizza2); // false.
boolean test8 = pizza1.equals(pizza3); // false.
boolean test9 = pizza1 == pizza2; // false.
pizza1 = pizza2; // Creates aliases.
boolean test10 = pizza1.equals(pizza2); // true.
boolean test11 = pizza1 == pizza2; // true.

2.14 Boolean Logical Operators: !, ^, &, |

Boolean logical operators include the unary operator ! (logical complement) and the
binary operators & (logical AND), | (logical inclusive OR), and ^ (logical exclusive OR,
also called logical XOR). These operators can be applied to boolean or Boolean oper-
ands, returning a boolean value. The operators &, |, and ̂ can also be applied to inte-
gral operands to perform bitwise logical operations (p. 84).

Given that x and y represent boolean expressions, the boolean logical operators are
defined in Table 2.26. The precedence of the operators decreases from left to right
in the table.

These operators always evaluate both of the operands, unlike their counterpart con-
ditional operators && and || (p. 81). Unboxing is applied to the operand values, if nec-
essary. Truth values for boolean logical operators are shown in Table 2.26, where x
and y are either of type boolean or Boolean.

Table 2.26 Truth Values for Boolean Logical Operators

x y
Complement
!x

AND
x & y

XOR
x ^ y

OR
x | y

true true false true false true

true false false false true true

false true true false true true

false false true false false false

80 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 80 Friday, December 2, 2022 4:24 PM
Operand Evaluation for Boolean Logical Operators

In the evaluation of boolean expressions involving boolean logical AND, XOR, and
OR operators, both the operands are evaluated. The order of operand evaluation is
always from left to right.

if (i > 0 & i++ < 10) {/*...*/} // i will be incremented, regardless of value in i.

The binary boolean logical operators have lower precedence than the arithmetic and
relational operators, but higher precedence than the assignment, conditional AND,
and OR operators (p. 81). This is illustrated in the following examples:

boolean b1, b2, b3 = false, b4 = false;
Boolean b5 = true;
b1 = 4 == 2 & 1 < 4; // false, evaluated as (b1 = ((4 == 2) & (1 < 4)))
b2 = b1 | !(2.5 >= 8); // true
b3 = b3 ^ b5; // true, unboxing conversion on b5
b4 = b4 | b1 & b2; // false

Here, the order of evaluation is illustrated for the last expression statement:

 (b4 = (b4 | (b1 & b2)))

 (b4 = (false | (b1 & b2)))

 (b4 = (false | (false & b2)))

 (b4 = (false | (false & true)))

 (b4 = (false | false))

 (b4 = false)

 false

Note that b2 was evaluated, although strictly speaking, it was not necessary. This
behavior is guaranteed for boolean logical operators.

Boolean Logical Compound Assignment Operators: &=, ^=, |=

Compound assignment operators for the boolean logical operators are defined in
Table 2.27. The left-hand operand must be a boolean variable, and the right-hand
operand must be a boolean expression. An identity conversion is applied implic-
itly on assignment. These operators can also be applied to integral operands to per-
form bitwise compound assignments (p. 84). See also the discussion on arithmetic
compound assignment operators (p. 67).

Table 2.27 Boolean Logical Compound Assignment Operators

Expression
Given a and b are of type boolean or Boolean, the expression is
evaluated as:

b &= a b = (b & (a))

b ^= a b = (b ^ (a))

b |= a b = (b | (a))

2.15: CONDITIONAL OPERATORS: &&, || 81

JSE17_OCP.book Page 81 Friday, December 2, 2022 4:24 PM
Here are some examples to illustrate the behavior of boolean logical compound
assignment operators:

boolean b1 = false, b2 = true, b3 = false;
Boolean b4 = false;
b1 |= true; // true
b4 ^= b1; // (1) true, unboxing in (b4 ^ (b1)), boxing on assignment
b3 &= b1 | b2; // (2) false, b3 = (b3 & (b1 | b2))
b3 = b3 & b1 | b2; // (3) true, b3 = ((b3 & b1) | b2)

The assignment at (1) entails unboxing to evaluate the expression on the
right-hand side, followed by boxing to assign the boolean result. It is also instruc-
tive to compare how the assignments at (2) and (3) are performed, as they lead to
different results with the same values of the operands, showing how the prece-
dence affects the evaluation.

2.15 Conditional Operators: &&, ||

The conditional operators && and || are similar to their counterpart logical opera-
tors & and |, except that their evaluation is short-circuited. Given that x and y rep-
resent values of boolean or Boolean expressions, the conditional operators are
defined in Table 2.28. In the table, the operators are listed in decreasing order of
precedence.

Unlike their logical counterparts & and |, which can also be applied to integral
operands for bitwise operations, the conditional operators && and || can be applied
to only boolean operands. Their evaluation results in a boolean value. Truth values
for conditional operators are shown in Table 2.29. Not surprisingly, the conditional
operators have the same truth values as their counterpart logical operators. How-
ever, unlike with their logical counterparts, there are no compound assignment
operators for the conditional operators.

Table 2.28 Conditional Operators

Conditional AND x && y true if both operands are true; otherwise false.

Conditional OR x || y true if either or both operands are true; otherwise
false.

Table 2.29 Truth Values for Conditional Operators

x y
AND
x && y

OR
x || y

true true true true

true false false true

false true false true

false false false false

82 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 82 Friday, December 2, 2022 4:24 PM
Short-Circuit Evaluation

In the evaluation of boolean expressions involving conditional AND and OR, the
left-hand operand is evaluated before the right-hand operand, and the evaluation
is short-circuited (i.e., if the result of the boolean expression can be determined
from the left-hand operand, the right-hand operand is not evaluated). In other
words, the right-hand operand is evaluated conditionally.

The binary conditional operators have lower precedence than the arithmetic, rela-
tional, and logical operators, but higher precedence than the assignment operators.
Unboxing of the operand value takes place when necessary, before the operation is
performed. The following examples illustrate usage of conditional operators:

Boolean b1 = 4 == 2 && 1 < 4; // false, short-circuit evaluated as
 // (b1 = ((4 == 2) && (1 < 4)))
boolean b2 = !b1 || 2.5 > 8; // true, short-circuit evaluated as
 // (b2 = ((!b1) || (2.5 > 8)))
Boolean b3 = !(b1 && b2); // true
boolean b4 = b1 || !b3 && b2; // false, short-circuit evaluated as
 // (b4 = (b1 || ((!b3) && b2)))

The order of evaluation for computing the value stored in the boolean variable b4
proceeds as follows:

 (b4 = (b1 || ((!b3) && b2)))

 (b4 = (false || ((!b3) && b2)))

 (b4 = (false || ((!true) && b2)))

 (b4 = (false || ((false) && b2)))

 (b4 = (false || false))

 (b4 = false)

Note that b2 is not evaluated, short-circuiting the evaluation. Example 2.3 illus-
trates the short-circuit evaluation of the initialization expressions in the declaration
statements given in the code snippet above. In addition, it shows an evaluation
(see the declaration of b5) involving boolean logical operators that always evaluate
both operands. The output shows how many operands were evaluated for each
expression. See also Example 2.1, p. 54, which uses a similar approach to illustrate
the order of operand evaluation in arithmetic expressions.

Example 2.3 Short-Circuit Evaluation Involving Conditional Operators

public class ShortCircuit {
 public static void main(String[] args) {
 // Boolean b1 = 4 == 2 && 1 < 4;
 Boolean b1 = operandEval(1, 4 == 2) && operandEval(2, 1 < 4);
 System.out.println("Value of b1: " + b1);

 // boolean b2 = !b1 || 2.5 > 8;
 boolean b2 = !operandEval(1, b1) || operandEval(2, 2.5 > 8);
 System.out.println("Value of b2: " + b2);

PROGRAMMING EXERCISE 83

JSE17_OCP.book Page 83 Friday, December 2, 2022 4:24 PM
 // Boolean b3 = !(b1 && b2);
 Boolean b3 = !(operandEval(1, b1) && operandEval(2, b2));
 System.out.println("Value of b3: " + b3);

 // boolean b4 = b1 || !b3 && b2;
 boolean b4 = operandEval(1, b1) || !operandEval(2, b3) && operandEval(3, b2);
 System.out.println("Value of b4: " + b4);

 // boolean b5 = b1 | !b3 & b2; // Using boolean logical operators
 boolean b5 = operandEval(1, b1) | !operandEval(2, b3) & operandEval(3, b2);
 System.out.println("Value of b5: " + b5);
 }

 static boolean operandEval(int opNum, boolean operand) { // (1)
 System.out.println(opNum);
 return operand;
 }
}

Output from the program:

1
Value of b1: false
1
Value of b2: true
1
Value of b3: true
1
2
Value of b4: false
1
2
3
Value of b5: false

Short-circuit evaluation can be used to ensure that a reference variable denotes an
object before it is used.

if (objRef != null && objRef.equals(other)) { /*...*/ }

The method call is now conditionally dependent on the left-hand operand and will
not be executed if the variable objRef has the null reference. If we use the logical &
operator and the variable objRef has the null reference, evaluation of the
right-hand operand will result in a NullPointerException.

In summary, we employ the conditional operators && and || if the evaluation of the
right-hand operand is conditionally dependent on the left-hand operand. We use
the boolean logical operators & and | if both operands must be evaluated. The sub-
tlety of conditional operators is illustrated by the following examples:

if (i > 0 && i++ < 10) {/*...*/} // i is not incremented if i > 0 is false.
if (i > 0 || i++ < 10) {/*...*/} // i is not incremented if i > 0 is true.

84 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 84 Friday, December 2, 2022 4:24 PM
2.16 Integer Bitwise Operators: ~, &, |, ^

A review of integer representation (p. 34) is recommended before continuing with
this section on how integer bitwise operators can be applied to values of integral
data types.

Integer bitwise operators include the unary operator ~ (bitwise complement) and the
binary operators & (bitwise AND), | (bitwise inclusive OR), and ^ (bitwise exclusive
OR, also known as bitwise XOR). The operators &, |, and ^ are overloaded, as they
can be applied to boolean or Boolean operands to perform boolean logical operations
(p. 79).

The binary bitwise operators perform bitwise operations between corresponding
individual bit values in the operands. Unary numeric promotion is applied to the
operand of the unary bitwise complement operator ~, and binary numeric promo-
tion is applied to the operands of the binary bitwise operators. The result is a new
integer value of the promoted type, which can be either int or long.

Given that A and B are corresponding bit values (either 0 or 1) in the left-hand and
right-hand operands, respectively, these bitwise operators are defined as shown in
Table 2.30. The operators are listed in order of decreasing precedence.

The result of applying bitwise operators between two corresponding bits in the
operands is shown in Table 2.31, where A and B are corresponding bit values in the
left-hand and right-hand operands, respectively. Table 2.31 is analogous to
Table 2.26 for boolean logical operators, if we consider bit value 1 to represent true
and bit value 0 to represent false.

Table 2.30 Integer Bitwise Operators

Operator name Notation
Effect on each bit of the binary
representation

Bitwise complement ~A Invert the bit value: 1 to 0, 0 to 1.

Bitwise AND A & B 1 if both bits are 1; otherwise 0.

Bitwise OR A | B 1 if either or both bits are 1; otherwise 0.

Bitwise XOR A ^ B 1 if and only if one of the bits is 1; otherwise 0.

Table 2.31 Result Table for Bitwise Operators

A B
Complement
~A

AND
A & B

XOR
A ^ B

OR
A | B

1 1 0 1 0 1

1 0 0 0 1 1

0 1 1 0 1 1

0 0 1 0 0 0

2.16: INTEGER BITWISE OPERATORS: ~, &, |, ^ 85

JSE17_OCP.book Page 85 Friday, December 2, 2022 4:24 PM
Examples of Bitwise Operator Application

char v1 = ')'; // Unicode value 41
byte v2 = 13;

int result1 = ~v1; // -42
int result2 = v1 & v2; // 9
int result3 = v1 | v2; // 45
int result4 = v1 ^ v2; // 36

Table 2.32 shows how the result is calculated. Unary and binary numeric promo-
tions are applied first, converting the operands to int in these cases. Note that the
operator semantics are applied to corresponding individual bits—that is, the first
bit of the left-hand operand and the first bit of the right-hand operand, the second
bit of the left-hand operand and the second bit of the right-hand operand, and so
on.

It is instructive to run examples and print the result of a bitwise operation in dif-
ferent notations, as shown in Example 2.4. The integer bitwise operators support a
programming technique called bit masking. The value v2 is usually called a bit mask.
Depending on the bitwise operation performed on the value v1 and the mask v2,
we see how the resulting value reflects the bitwise operation performed between
the individual corresponding bits of the value v1 and the mask v2. By choosing
appropriate values for the bits in the mask v2 and the right bitwise operation, it is
possible to extract, set, and toggle specific bits in the value v1.

Methods for converting integers to strings in different notations can be found in
the Integer class (§8.3, p. 445).

Example 2.4 Bitwise Operations

public class BitOperations {
 public static void main(String[] args) {
 char v1 = ')'; // Unicode value 41
 byte v2 = 13;
 printIntToStr("v1:", v1); // 41
 printIntToStr("v2:", v2); // 13
 printIntToStr("~v1:", ~v1); // -42
 printIntToStr("v1 & v2:", v1 & v2); // 9
 printIntToStr("v1 | v2:", v1 | v2); // 45

Table 2.32 Examples of Bitwise Operations

~v1 v1 & v2 v1 | v2 v1 ^ v2

~ 0...0010 1001 0...0010 1001 0...0010 1001 0...0010 1001

& 0...0000 1101 | 0...0000 1101 ^ 0...0000 1101

= 1...1101 0110 = 0...0000 1001 = 0...0010 1101 = 0...0010 0100

= 0xffffffd6 = 0x00000009 = 0x0000002d = 0x00000024

= -42 = 9 = 45 = 36

86 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 86 Friday, December 2, 2022 4:24 PM
 printIntToStr("v1 ^ v2:", v1 ^ v2); // 36
 }

 public static void printIntToStr(String label, int result) {
 System.out.println(label);
 System.out.println(" Binary: " + Integer.toBinaryString(result));
 System.out.println(" Hex: " + Integer.toHexString(result));
 System.out.println(" Decimal: " + result);
 }
}

Output from the program:

v1:
 Binary: 101001
 Hex: 29
 Decimal: 41
v2:
 Binary: 1101
 Hex: d
 Decimal: 13
~v1:
 Binary: 11111111111111111111111111010110
 Hex: ffffffd6
 Decimal: -42
v1 & v2:
 Binary: 1001
 Hex: 9
 Decimal: 9
v1 | v2:
 Binary: 101101
 Hex: 2d
 Decimal: 45
v1 ^ v2:
 Binary: 100100
 Hex: 24
 Decimal: 36

Bitwise Compound Assignment Operators: &=, ^=, |=

Bitwise compound assignment operators for the bitwise operators are defined in
Table 2.33. Type conversions for these operators, when applied to integral
operands, are the same as for other compound assignment operators: An implicit
narrowing conversion is performed on assignment when the destination data type
is either byte, short, or char. These operators can also be applied to boolean
operands to perform logical compound assignments (p. 80).

Table 2.33 Bitwise Compound Assignment Operators

Expression Given T is the integral type of b, the expression is evaluated as:

b &= a b = (T) ((b) & (a))

b ^= a b = (T) ((b) ^ (a))

2.17: SHIFT OPERATORS: <<, >>, >>> 87

JSE17_OCP.book Page 87 Friday, December 2, 2022 4:24 PM
Examples of Bitwise Compound Assignment

int v0 = -42;
char v1 = ')'; // 41
byte v2 = 13;

v0 &= 15; // 1...1101 0110 & 0...0000 1111 => 0...0000 0110 (= 6)
v1 |= v2; // (1) 0...0010 1001 | 0...0000 1101 => 0...0010 1101 (= 45, '-')

At (1) in these examples, both the char value in v1 and the byte value in v2 are first
promoted to int. The result is implicitly narrowed to the destination type char on
assignment.

2.17 Shift Operators: <<, >>, >>>

The binary shift operators return a new value formed by shifting bits either left or
right a specified number of times in a given integral value. The number of shifts
(also called the shift distance) is given by the right-hand operand, and the value that
is to be shifted is given by the left-hand operand. Note that unary numeric promo-
tion is applied to each operand individually. The value returned has the promoted
type of the left-hand operand. Also, the value of the left-hand operand is not
affected by applying the shift operator.

The shift distance is calculated by AND-ing the value of the right-hand operand
with a mask value of 0x1f (31) if the left-hand operand has the promoted type int,
or using a mask value of 0x3f (63) if the left-hand operand has the promoted type
long. This effectively means masking the five lower bits of the right-hand operand
in the case of an int left-hand operand, and masking the six lower bits of the
right-hand operand in the case of a long left-hand operand. Thus the shift distance
is always in the range 0 to 31 when the promoted type of the left-hand operand is
int (which has size 32 bits), and in the range 0 to 63 when the promoted type of the
left-hand operand is long (which has size 64 bits).

Given that v contains the value whose bits are to be shifted and n specifies the num-
ber of bits to shift, the bitwise operators are defined in Table 2.34. It is implied that
the value n in Table 2.34 is subject to the shift distance calculation outlined above,
and that the shift operations are always performed on the value of the left-hand
operand represented in two’s complement.

b |= a b = (T) ((b) | (a))

Table 2.34 Shift Operators

Shift left v << n Shift all bits in v left n times, filling with 0 from
the right.

Table 2.33 Bitwise Compound Assignment Operators (Continued)

Expression Given T is the integral type of b, the expression is evaluated as:

88 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 88 Friday, December 2, 2022 4:24 PM
Since char, byte, and short operands are promoted to int, the result of applying
these bitwise operators is always either an int or a long value. Care must be taken
in employing a cast to narrow the resulting value, as this can result in a loss of
information as the upper bits are discarded during conversion.

Note that regardless of the promotion of the values in the operands or determina-
tion of the shift distance, the operands v and n are not affected by these three shift
operators. However, the shift compound assignment operators, discussed in this
section, can change the value of the left-hand operand v.

Bit values shifted out (falling off) from bit 0 or the most significant bit are lost. Since
bits can be shifted both left and right, a positive value when shifted can result in a
negative value, and vice versa.

The Shift-Left Operator <<

As the bits are shifted left, zeros are always filled in from the right.

int i = 12;
int result = i << 4; // 192

The bits in the int value for i are shifted left four places as follows:

i << 4
= 0000 0000 0000 0000 0000 0000 0000 1100 << 4
= 0000 0000 0000 0000 0000 0000 1100 0000
= 0x000000c0
= 192

Each left-shift corresponds to multiplication of the value by 2. In the above
example, 12 * 24 is 192.

The sign bit of a byte or short value is extended to fill the higher bits when the value
is promoted, as illustrated by the example below:

byte b = -42; // 11010110
short n = 4;
int result = b << n; // -672

The values of the two operands, b and n, in the previous example are promoted
individually. The short value in n is promoted to int. The byte value in b, after pro-
motion to int, is shifted left 4 places:

b << n
= 1101 0110 << 0000 0000 0000 0100
= 1111 1111 1111 1111 1111 1111 1101 0110 <<0000 0000 0000 0000 0000 0000 0000 0100
= 1111 1111 1111 1111 1111 1111 1101 0110 << 4

Shift right with sign bit v >> n Shift all bits in v right n times, filling with the
sign bit from the left.

Shift right with zero fill v >>> n Shift all bits in v right n times, filling with 0 from
the left.

Table 2.34 Shift Operators (Continued)

2.17: SHIFT OPERATORS: <<, >>, >>> 89

JSE17_OCP.book Page 89 Friday, December 2, 2022 4:24 PM
= 1111 1111 1111 1111 1111 1101 0110 0000
= 0xfffffd60
= -672

In the above example, -42 * 24 is -672.

Care must also be taken when assigning the result of a shift operator to a narrower
data type.

byte a = 32;
int j = a << 3; // 256
byte b = (byte) (a << 3); // 0. Cast mandatory.

The result of (a << 3) is 256.

a << 3
= 0000 0000 0000 0000 0000 0000 0010 0000 << 3
= 0000 0000 0000 0000 0000 0001 0000 0000
= 0x00000100
= 256

The value that j gets is 256, but the value that b gets is 0, as the higher bits are dis-
carded in the explicit narrowing conversion.

The examples above do not show how the shift distance is determined. It is obvi-
ous from the value of the right-hand operand, which is within the range 0 to 31,
inclusive. An example with the shift-left operator, where the value of the
right-hand operand is out of range, is shown below.

12 << 36
= 0000 0000 0000 0000 0000 0000 0000 1100 << (0...0010 0100 & 0001 1111)
= 0000 0000 0000 0000 0000 0000 0000 1100 << 0...0000 0100
= 0000 0000 0000 0000 0000 0000 0000 1100 << 4
= 0000 0000 0000 0000 0000 0000 1100 0000
= 0x000000c0
= 192

The value of the right-hand operand, 36, is AND-ed with the mask 11111 (i.e., 31,
0x1f), giving the shift distance 4. This is the same as (36 % 32). It is not surprising
that (12 << 36) is equal to (12 << 4) (i.e., 192).

The Shift-Right-with-Sign-Fill Operator >>

As the bits are shifted right, the sign bit (the most significant bit) is used to fill in
from the left. So, if the left-hand operand is a positive value, zeros are filled in from
the left, but if the operand is a negative value, ones are filled in from the left.

int i = 12;
int result = i >> 2; // 3

The value for i is shifted right with sign-fill two places.

i >> 2
= 0000 0000 0000 0000 0000 0000 0000 1100 >> 2
= 0000 0000 0000 0000 0000 0000 0000 0011
= 0x00000003

90 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 90 Friday, December 2, 2022 4:24 PM
= 3

Each right-shift corresponds to integer division of the value by 2, but this can give
unexpected results if care is not exercised, as bits start falling off. In the above
example, 12 / 22 is 3.

Similarly, when a negative value is shifted right, ones are filled in from the left.

byte b = -42; // 11010110
int result = b >> 4; // -3

The byte value for b, after promotion to int, is shifted right with sign-fill four
places.

b >> 4
= 1111 1111 1111 1111 1111 1111 1101 0110 >> 4
= 1111 1111 1111 1111 1111 1111 1111 1101
= 0xfffffffd
= -3

In the following example, the right-hand operand has a negative value:

-42 >> -4
= 1111 1111 1111 1111 1111 1111 1101 0110 >> (1...1111 1100 & 0001 1111)
= 1111 1111 1111 1111 1111 1111 1101 0110 >> 0...0001 1100
= 1111 1111 1111 1111 1111 1111 1101 0110 >> 28
= 1111 1111 1111 1111 1111 1111 1111 1111
= 0xffffffff
= -1

The value of the right-hand operand, -4, is AND-ed with the mask 11111 (i.e., 31,
0x1f), giving the shift distance 28. This is the same as (-4 % 32). The value of (-42
>> -4) is equivalent to (-42 >> 28).

The Shift-Right-with-Zero-Fill Operator >>>

As the bits are shifted right, zeros are filled in from the left, regardless of whether
the operand has a positive or a negative value.

Obviously, for positive values, the shift-right-with-zero-fill >>> and
shift-right-with-sign-fill >> operators are equivalent. The expression (12 >> 2) and
the expression (12 >>> 2) return the same value:

12 >>> 2
= 0000 0000 0000 0000 0000 0000 0000 1100 >>> 2
= 0000 0000 0000 0000 0000 0000 0000 0011
= 0x00000003
= 3

Individual unary numeric promotion of the left-hand operand is shown in the fol-
lowing example:

byte b = -42; // 1101 0110
int result = b >>> 4; // 268435453

2.17: SHIFT OPERATORS: <<, >>, >>> 91

JSE17_OCP.book Page 91 Friday, December 2, 2022 4:24 PM
It is instructive to compare the value of the expression (-42 >>> 4) with that of the
expression (-42 >> 4), which has the value -3. The byte value for b, after unary
numeric promotion to int, is shifted right with zero-fill four places.

b >>> 4
= 1111 1111 1111 1111 1111 1111 1101 0110 >>> 4
= 0000 1111 1111 1111 1111 1111 1111 1101
= 0x0ffffffd
= 268435453

In the following example, the value of the right-hand operand is out of range,
resulting in a shift distance of 28 (as we have seen before):

-42 >>> -4
= 1111 1111 1111 1111 1111 1111 1101 0110 >>> 28
= 0000 0000 0000 0000 0000 0000 0000 1111
= 0x0000000f
= 15

Shift Compound Assignment Operators: <<=, >>=, >>>=

Table 2.35 lists shift compound assignment operators. Type conversions for these
operators, when applied to integral operands, are the same as for other compound
assignment operators: An implicit narrowing conversion is performed on assign-
ment when the destination data type is either byte, short, or char.

Examples of Shift Compound Assignment Operators

int i = -42;
i >>= 4; // 1...1101 0110 >> 4 => 1...1111 1101 (= -3).

byte a = 12;
a <<= 5; // (1) -128. Evaluated as a = (byte)((int)a << 5)
a = a << 5; // Compile-time error! Needs explicit cast.

The example at (1) illustrates the truncation that takes place on narrowing to the
destination type. The byte value in a is first promoted to int (by applying unary
numeric promotion in this case), then shifted left five places, followed by implicit
narrowing to byte:

a = (byte) (a << 5)
 = (byte) (0000 0000 0000 0000 0000 0000 0000 1100 << 5)
 = (byte) 0000 0000 0000 0000 0000 0001 1000 0000
 = 1000 0000
 = 0x80

Table 2.35 Shift Compound Assignment Operators

Expression Given T as the integral type of v, the expression is evaluated as:

v <<= n v = (T) ((v) << (n))

v >>= n v = (T) ((v) >> (n))

v >>>= n v = (T) ((v) >>> (n))

92 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 92 Friday, December 2, 2022 4:24 PM
 = -128

2.18 The Conditional Operator ?:

The ternary conditional operator ?: allows conditional expressions to be defined. The
conditional expression has the following syntax:

condition ? expression1 : expression2

It is called ternary because it has three operands. If the boolean expression condition
is true, then expression1 is evaluated; otherwise, expression2 is evaluated. Both
expression1 and expression2 must evaluate to values that can be converted to the type
of the conditional expression. This type is determined from the types of the two
expressions. The value of the evaluated expression is converted to the type of the
conditional expression, and may involve autoboxing and unboxing.

Evaluation of a conditional expression is an example of short-circuit evaluation. As
only one of the two expressions is evaluated, one should be wary of any side effects
in a conditional expression.

In the following code snippet at (1), both expressions in the conditional expression
are of type byte. The type of the conditional expression is therefore byte. That a
value of type byte can be converted to an int by an implicit widening numeric con-
version to be assignment compatible with the int variable daysInFebruary is sec-
ondary in determining the type of the conditional expression. Note that the
conditional operator at (1) has higher precedence than the assignment operator =,
making it unnecessary to enclose the conditional expression in parentheses.

boolean leapYear = false;
byte v29 = 29;
byte v28 = 28;
int daysInFebruary = leapYear ? v29 : v28; // (1)

The following examples illustrate the use of conditional expressions. The type of
the conditional expression at (2) is int, and no conversion of any expression value
is necessary. The type of the conditional expression at (3) is double, due to binary
numeric promotion: The int value of the first expression is promoted to a double.
The compiler reports an error because a double cannot be assigned to an int vari-
able. The type of the conditional expression at (4) is also double as at (3), but now
the double value is assignment compatible with the double variable minDoubleValue.

int i = 3;
int j = 4;
int minValue1 = i < j ? i : j; // (2) int
int minValue2 = i < j ? i : Double.MIN_VALUE; // (3) double. Not OK.
double minDoubleValue = i < j ? i : Double.MIN_VALUE; // (4) double

At (5) below, the primitive values of the expressions can be boxed and assigned to
an Object reference. At (6), the int value of the first expression can be boxed in an

2.19: OTHER OPERATORS: NEW, [], INSTANCEOF, -> 93

JSE17_OCP.book Page 93 Friday, December 2, 2022 4:24 PM
Integer. The println() method creates and prints a text representation of any object
whose reference value is passed as a parameter.

// Assume i and j are of type int and initialized correctly.
Object obj = i < j ? i : true; // (5) value of i boxed in Integer or
 // literal true boxed in Boolean
System.out.println(i < j ? i : "Hi"); // (6) value of i boxed in Integer or
 // String object "Hi"

The conditional expression is not an expression statement. The following code will
not compile:

(i < j) ? i : j; // Compile-time error!

The conditional expression can be nested, and the conditional operator associates
from right to left.

a?b:c?d:e?f:g evaluates as (a?b:(c?d:(e?f:g)))

The value of this conditional expression is g if, and only if, a, c, and e are false. A
nested conditional expression is used in the next example. As a convention, the
condition in a conditional expression is enclosed in parentheses to aid in reading
the code. Typically, a conditional expression is used when it makes the code easier
to read, especially when the expressions are short and without side effects.

int n = 3;
String msg = (n==0) ? "no cookies." : (n==1) ? "one cookie." : "many cookies.";
System.out.println("You get " + msg); // You get many cookies.

The conditional operator is the expression equivalent of the if-else statement
(§4.1, p. 155).

2.19 Other Operators: new, [], instanceof, ->

The new operator is used to create objects, such as instances of classes and arrays. It is
used with a constructor call to instantiate classes (§5.11, p. 274) and with the [] nota-
tion to create arrays (§3.9, p. 119). It is also used to instantiate anonymous arrays (§3.9,
p. 123).

Pizza onePizza = new Pizza(); // Create an instance of the Pizza class.

The [] notation is used to declare and construct arrays, and is also used to access
array elements (§3.9, p. 121).

int[] anArray = new int[5];// Declare and construct an int array of 5 elements.
anArray[4] = anArray[3]; // Element at index 4 gets value of element at index 3.

The boolean, binary, and infix operator instanceof is used for either type compari-
son or pattern matching (§5.11, p. 274).

Pizza myPizza = new Pizza();
boolean test1 = myPizza instanceof Pizza; // true.
boolean test2 = "Pizza" instanceof Pizza; // Compile-time error. Incompatible
 // operand types.

94 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 94 Friday, December 2, 2022 4:24 PM
boolean test3 = null instanceof Pizza; // Always false. null is not an instance.

The arrow operator -> is used in a switch statement (§4.2, p. 157), in a switch expres-
sion (§4.3, p. 166), and in the definition of a lambda expression (§13.2, p. 695).

java.util.function.Predicate<String> predicate = str -> str.length() % 2 == 0;
boolean test4 = predicate.test("The lambda strikes back!"); // true.

Review Questions

2.10 Which of the following statements are true?
Select the two correct answers.
(a) The remainder operator % can be used only with integral operands.
(b) Short-circuit evaluation occurs with boolean logical operators.
(c) The arithmetic operators *, /, and % have the same level of precedence.
(d) A short value ranges from -128 to +127, inclusive.
(e) (+15) is a legal expression.

2.11 Which of the following statements are true about the lines of output printed by the
following program?

public class BoolOp {
 static void op(boolean a, boolean b) {
 boolean c = a != b;
 boolean d = a ^ b;
 boolean e = c == d;
 System.out.println(e);
 }

 public static void main(String[] args) {
 op(false, false);
 op(true, false);
 op(false, true);
 op(true, true);
 }
}

Select the three correct answers.
(a) All lines printed are the same.
(b) At least one line contains false.
(c) At least one line contains true.
(d) The first line contains false.
(e) The last line contains true.

2.12 What is the result of running the following program?

public class OperandOrder {
 public static void main(String[] args) {
 int i = 0;
 int[] a = {3, 6};
 a[i] = i = 9;
 System.out.println(i + " " + a[0] + " " + a[1]);

2.19: OTHER OPERATORS: NEW, [], INSTANCEOF, -> 95

JSE17_OCP.book Page 95 Friday, December 2, 2022 4:24 PM
 }
}

Select the one correct answer.
(a) When run, the program throws an ArrayIndexOutOfBoundsException.
(b) When run, the program will print 9 9 6.
(c) When run, the program will print 9 0 6.
(d) When run, the program will print 9 3 6.
(e) When run, the program will print 9 3 9.

2.13 Which of the following statements are true about the output from the following
program?

public class Logic {
 public static void main(String[] args) {
 int i = 0;
 int j = 0;

 boolean t = true;
 boolean r;

 r = (t & 0 < (i+=1));
 r = (t && 0 < (i+=2));
 r = (t | 0 < (j+=1));
 r = (t || 0 < (j+=2));
 System.out.println(i + " " + j);
 }
}

Select the two correct answers.
(a) The first digit printed is 1.
(b) The first digit printed is 2.
(c) The first digit printed is 3.
(d) The second digit printed is 1.
(e) The second digit printed is 2.
(f) The second digit printed is 3.

2.14 Given the following code:

int x = 1, y = 2, z = 3;
if (x < y || ++z > 4) {
 System.out.println("a" + x + y + z);
}
if (x < y && ++z > 4) {
 System.out.println("b" + x + y + z);
}

What will be the output?
Select the one correct answer.
(a) a124

b125

(b) a123

96 CHAPTER 2: BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS

JSE17_OCP.book Page 96 Friday, December 2, 2022 4:24 PM
(c) a123
b124

2.15 Which of the following statements when inserted at (1) will not result in a com-
pile-time error?

public class RQ05A200 {
 public static void main(String[] args) {
 int i = 20;
 int j = 30;
 // (1) INSERT STATEMENT HERE
 }
}

Select the three correct answers.
(a) int result1 = i < j ? i : j * 10d;
(b) int result2 = i < j ? { ++i } : { ++j };
(c) Number number = i < j ? i : j * 10D;
(d) System.out.println(i < j ? i);
(e) System.out.println(i < j ? ++i : ++j);
(f) System.out.println(i == j ? i == j : "i not equal to j");

2.16 Which of the following statements are true about the following code?

public class RQ05A100 {
 public static void main(String[] args) {
 int n1 = 10, n2 = 10;
 int m1 = 20, m2 = 30;
 int result = n1 != n2? n1 : m1 != m2? m1 : m2;
 System.out.println(result);
 }
}

Select the one correct answer.
(a) The program will fail to compile.
(b) The program will throw an ArithmeticException at runtime.
(c) The program will compile and print 10 when run.
(d) The program will compile and print 20 when run.
(e) The program will compile and print 30 when run.

	Basic Elements, Primitive Data Types, and Operators
	2.1 Basic Language Elements
	Lexical Tokens
	Identifiers
	Examples of Legal Identifiers
	Examples of Illegal Identifiers

	Keywords
	Separators
	Literals
	Integer Literals
	Representing Integers
	Calculating Two’s Complement

	Floating-Point Literals
	Examples of double Literals
	Examples of float Literals

	Underscores in Numerical Literals
	Examples of Legal Use of Underscores in Numerical Literals
	Examples of Illegal Use of Underscores in Numerical Literals

	Boolean Literals
	Character Literals
	Escape Sequences

	String Literals
	Whitespace
	Comments
	Single-Line Comment
	Multiple-Line Comment
	Documentation Comment

	2.2 Primitive Data Types
	The Integer Types
	The char Type
	The Floating-Point Types
	The boolean Type

	2.3 Conversions
	Widening and Narrowing Primitive Conversions
	Widening and Narrowing Reference Conversions
	Boxing and Unboxing Conversions
	Other Conversions

	2.4 Type Conversion Contexts
	Assignment Context
	Method Invocation Context
	Casting Context of the Unary Type Cast Operator (type)
	Numeric Promotion Context
	Unary Numeric Promotion
	Binary Numeric Promotion

	2.5 Precedence and Associativity Rules for Operators
	2.6 Evaluation Order of Operands
	Left-Hand Operand Evaluation First
	Operand Evaluation before Operation Execution
	Left-to-Right Evaluation of Argument Lists

	2.7 The Simple Assignment Operator =
	Assigning Primitive Values
	Assigning References
	Multiple Assignments
	Type Conversions in an Assignment Context

	2.8 Arithmetic Operators: *, /, %, +, -
	Arithmetic Operator Precedence and Associativity
	Evaluation Order in Arithmetic Expressions
	Range of Numeric Values
	Integer Arithmetic
	Floating-Point Arithmetic

	Unary Arithmetic Operators: -, +
	Multiplicative Binary Operators: *, /, %
	Multiplication Operator: *
	Division Operator: /
	Remainder Operator: %

	Additive Binary Operators: +, -
	Numeric Promotions in Arithmetic Expressions
	Arithmetic Compound Assignment Operators: *=, /=, %=, +=, -=

	2.9 The Binary String Concatenation Operator +
	2.10 Variable Increment and Decrement Operators: ++, --
	The Increment Operator ++
	The Decrement Operator --
	2.1 Which of the following is not a legal comment in Java?
	2.2 What will be the result of compiling and running the following program?
	2.3 What will be the result of compiling and running the following program?
	2.4 Which of the following expressions evaluate to a floating-point value?
	2.5 What is the value of the expression (1 / 2 + 3 / 2 + 0.1)?
	2.6 What is the value of evaluating the following expression: (- -1-3 * 10 / 5-1)?
	2.7 What is the result of compiling and running the following program?
	2.8 Which is the first line that will cause a compile-time error in the following program?
	2.9 What will be the result of compiling and running the following program?

	2.11 Boolean Expressions
	2.12 Relational Operators: <, <=, >, >=
	2.13 Equality
	Primitive Data Value Equality: ==, !=
	Object Reference Equality: ==, !=
	Object Value Equality

	2.14 Boolean Logical Operators: !, ^, &, |
	Operand Evaluation for Boolean Logical Operators
	Boolean Logical Compound Assignment Operators: &=, ^=, |=

	2.15 Conditional Operators: &&, ||
	Short-Circuit Evaluation

	2.16 Integer Bitwise Operators: ~, &, |, ^
	Examples of Bitwise Operator Application
	Bitwise Compound Assignment Operators: &=, ^=, |=
	Examples of Bitwise Compound Assignment

	2.17 Shift Operators: <<, >>, >>>
	The Shift-Left Operator <<
	The Shift-Right-with-Sign-Fill Operator >>
	The Shift-Right-with-Zero-Fill Operator >>>
	Shift Compound Assignment Operators: <<=, >>=, >>>=
	Examples of Shift Compound Assignment Operators

	2.18 The Conditional Operator ?:
	2.19 Other Operators: new, [], instanceof, ->
	2.10 Which of the following statements are true?
	2.11 Which of the following statements are true about the lines of output printed by the following program?
	2.12 What is the result of running the following program?
	2.13 Which of the following statements are true about the output from the following program?
	2.14 Given the following code:
	2.15 Which of the following statements when inserted at (1) will not result in a compile-time error?
	2.16 Which of the following statements are true about the following code?

