1.1

1.2

1.3

1.4

1.5

1.6

Appendix D

Annotated Answers
to Review Questions

Basics of Java Programming

(c)

A method is an operation defining a particular behavior of an abstraction. Java
implements abstractions using classes that have properties and behaviors. Behav-
iors are defined by the operations of the abstraction.

(b)

An object is an instance of a class. Objects are created from classes that implement
abstractions. The objects that are created are concrete realizations of those abstrac-
tions. An object is neither a reference nor a variable.

(b)

(2) is the first line of a constructor declaration. A constructor in Java is declared like
a method that does not return a value. It has the same name as the class name, but
it does not specify a return type and therefore does not return a value. (1) is the
header of a class declaration, (3) is the first statement in the constructor body, and
(4), (5), and (6) are instance method declarations.

(b) and (f)

Two objects are created and three references are declared by the code. Objects are
normally created by using the new operator. The declaration of a reference creates
a variable regardless of whether a reference value is assigned to it or not.

(d)

An instance member is a field or an instance method. These members belong to all
instances of the class. Members that are not explicitly declared staticina class dec-
laration are instance members.

(c)

An object communicates with another object by calling an instance method of the
other object, passing and receiving any information that might be necessary.

1673

1674

1.7

1.8

1.9

1.10

1.11

2.1

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(d) and (f)

Given the declaration class B extends A {...}, we can conclude that class B
extends class A, class A is the superclass of class B, class B is a subclass of class A, and
class B inherits from class A, which means that objects of class B inherit the field
valuel from class A.

(d)

The compiler supplied with the JDK is named javac. The names of the source files
to be compiled are listed on the command line after the command javac. (c) will
compile and execute the program, but will not create a class file.

(a)

Java programs are executed by the Java Virtual Machine (JVM). In the JDK, the
command java is used to start the execution by the JVM. The java command
requires the name of a class that has a valid main() method. The JVM starts the pro-
gram execution by calling the main() method of the given class. The exact name of
the class should be specified, and not the name of the class file—that is, the .class
extension in the class file name should not be specified. Since it is specified that the
source file is compiled creating a class file, (c) would not work.

(a) and (d)

The file with a single-file source-code program can contain more than one class
declaration and the first class declaration must provide a valid main() method.
Such a program cannot access previously compiled user-defined classes, only
those in the standard library. It cannot consist of multiple files obviously, but pro-
gram arguments can be supplied on the command line.

(e)
(a) is incorrect because the JVM must be compatible with the Java Platform on
which the program was developed.

(b) is incorrect because the JIT feature of the JVM translates bytecode to machine
code.

(c) is incorrect because other languages, like Scala, also compile to bytecode and
can be executed by the JVM.

(d) is incorrect because a Java program can only create objects, but destroying
objects is at the discretion of the automatic garbage collector.

Basic Elements, Primitive Data Types, and Operators

(e)

Everything from the start sequence (/*) of a multiple-line comment to the first
occurrence of the end sequence (*/) of a multiple-line comment is ignored by the
compiler. Everything from the start sequence (//) of a single-line comment to the
end of the line is ignored by the compiler. In (e), the multiple-line comment ends
with the first occurrence of the end sequence (*/), leaving the second occurrence of
the end sequence (*/) unmatched.

2 BASIC ELEMENTS, PRIMITIVE DATA TYPES, AND OPERATORS 1675

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

(d)

An assignment statement is an expression statement. The value of the expression
statement is the value of the expression on the right-hand side. Since the assign-
ment operator is right associative, the statementa = b = ¢ = 20 is evaluated as
follows: (a = (b = (c = 20))). This results in the value 20 being assigned to c, then
the same value being assigned to b and finally to a. The program will compile and
print 20 at runtime.

(c)

In an assignment statement, the reference value of the source reference is assigned
to the destination reference. Assignment does not create a copy of the object
denoted by the source reference. After the assignment, both references denote the
same object—that is, they are aliases.

The variables a, b, and c are references of type String. The reference value of the
"cat" object is first assigned to a, then to b, and later to c. Just before the print state-
ment, a denotes "dog", whereas both b and ¢ denote "cat". The program prints the
string denoted by c—that is, "cat".

(a), (d), and (e)

A binary expression with any floating-point operand will be evaluated using
floating-point arithmetic. Expressions such as 2/3, where both operands are inte-
gers, will use integer arithmetic and evaluate to an integer value. In (e), the result
of (0x10 * 1L) is promoted to a floating-point value.

(b)

The / operator has higher precedence than the + operator. This means that the
expression is evaluated as ((1/2) + (3/2) + 0.1). The associativity of the binary
operators is from left to right, giving (((1/2) + (3/2)) + 0.1). Integer division
results in ((0 + 1) + 0.1), which evaluates to 1.1.

(b)
The expression evaluates to -6. The whole expression is evaluated as (((-(-1)) -
(3 * 10) / 5)) - 1) according to the precedence and associativity rules.

(d)
The expression ++k + k++ + + kis evaluated as ((++k) + (k++)) + (+k) — ((2) +
(2) + (3)), resulting in the value 7.

(d)

The types char and int are both integral. A char value can be assigned to an int
variable since the int type is wider than the char type and an implicit widening
conversion will be done. An int type cannot be assigned to a char variable because
the char type is narrower than the int type. The compiler will report an error about
a possible loss of precision at (4).

(a)
First, the expression ++i is evaluated, resulting in the value 2. Now the variable i
also has the value 2. The target of the assignment is now determined to be the ele-

1676

2.10

211

2.12

2.13

2.14

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

ment array[2]. Evaluation of the right-hand expression, --1, results in the value 1.
The variable i now has the value 1. The value of the right-hand expression 1 is then
assigned to the array element array[2], resulting in the array contents to become
{4, 8, 1}. The program computes and prints the sum of these values—that is, 13.

(c) and (e)

The remainder operator is not limited to integral values, but can also be applied to
floating-point operands. Short-circuit evaluation occurs with the conditional oper-
ators (&, | |). The operators *, /, and % have the same level of precedence. The data
type short is a 16-bit signed two’s complement integer, thus the range of values is
from -32768 to +32767, inclusive. (+15) is a legal expression using the unary + oper-
ator.

(a), (c), and (e)

The != and A operators, when used on boolean operands, will return true if and
only if one operand is true, and false otherwise. This means that d and e in the pro-
gram will always be assigned the same value, given any combination of truth val-
ues in a and b. The program will, therefore, print true four times.

()

The element referenced by a[i] is determined based on the current value of i,
which is 0—that is, the element a[0]. The expression i = 9 will evaluate to the value
9, which will be assigned to the variable i. The value 9 is also assigned to the array
element a[0]. After execution of the statement, the variable i will contain the value
9, and the array a will contain the values 9 and 6. The program will print 9 9 6
when run.

(c) and (d)

Note that the logical and conditional operators have lower precedence than the
relational operators. Unlike the & and | operators, the && and | | operators short-cir-
cuit the evaluation of their operands if the result of the operation can be deter-
mined from the value of the first operand. The second operand of the | | operator
in the program is never evaluated because the value of t remains true. All the oper-
ands of the other operators are evaluated. Variable i ends up with the value 3,
which is the first digit printed, and j ends up with the value 1, which is the second
digit printed.

(b)

Both | | and && are short-circuit conditional operators. In the conditional expression
(x <y || ++z > 4) of the first if statement, since the first operand x < y evaluates
to true, the second operand ++z > 4 is not evaluated, as the conditional operator is
['l. The if condition is true and the if block is executed, printing a123.

In the conditional expression (x < y || ++z > 4) of the second if statement, since
the first operand x < y evaluates to true, the second operand ++z > 4 is evaluated,
as the conditional operator is &&. The second operand is false (4 > 4); therefore,
the if condition is false and the if block is not executed.

3 DECLARATIONS 1677

2.15

2.16

3.1

3.2

3.3

(c), (e), and (f)

In (a), the third operand has the type double, which is not assignment compatible
with the type int of the variable resultl. Blocks are not legal operands in the con-
ditional operator, as in (b). In (c), the last two operands result in wrapper objects
with type Integer and Double, respectively, which are assignment compatible with
the type Number of the variable number. The evaluation of the conditional expression
results in the reference value of an Integer object with value 20 being assigned to
the number variable. All three operands of the operator are mandatory, which is not
the case in (d). In (e), the last two operands are of type int, and the evaluation of
the conditional expression results in an int value (21), whose text representation is
printed. In (f), the value of the second operand is boxed into a Boolean. The evalu-
ation of the conditional expression results in a string literal ("1 not equal to j"),
which is printed. The printIn() method creates and prints a text representation of
any object whose reference value is passed as a parameter.

(d)

The condition in the outer conditional expression is false. The condition in the
nested conditional expression is true, resulting in the value of ml (i.e., 20) being
printed.

Declarations

(c)

The local variable of type float will remain uninitialized. Fields and static vari-
ables are initialized with a default value. An instance variable of type int[] is a ref-
erence variable that will be initialized with the nu11 value. Local variables remain
uninitialized unless explicitly initialized.

(e)

The program will compile. The compiler can figure out that the local variable price
will always be initialized, since the value of the condition in the if statement is
true. The two instance variables and the two static variables are all initialized to
the respective default value of their type.

(a) and (e)

The first and the third pairs of methods will compile. The second pair of methods
will fail to compile, since their method signatures do not differ. The compiler has
no way of differentiating between the two methods. Note that the return type and
the names of the parameters are not a part of the method signature. Both methods
in the first pair are named fly and have a different number of parameters, thus
overloading this method name. The methods in the last pair do not overload the
method name glide, since only one method has that name. The method named
Glide is distinct from the method named glide, as identifiers are case sensitive in
Java.

1678

3.4

3.5

3.6

3.7

3.8

3.9

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(b) and (e)

A constructor can be declared private, but this means that this constructor can only
be used within the class. Constructors need not initialize all the fields when a class
is instantiated. A field will be assigned a default value if not explicitly initialized.
A constructor is non-static, and as such it can directly access both the static and
non-static members of the class.

(c)

A compile-time error will occur at (3), since the class does not have a constructor
accepting a single argument of type int. The declaration at (1) declares a method,
not a constructor, since it is declared as void. The method happens to have the same
name as the class, but that is irrelevant. The class has the default constructor, since
the class contains no constructor declarations. This constructor will be invoked to
create a MyClass object at (2).

(b)

The keyword this can only be used in non-static code, as in non-static methods,
constructors, and instance initializer blocks. Only one occurrence of each static
variable of a class is created, when the class is loaded by the JVM. This occurrence
is shared among all the objects of the class (and for that matter, by other clients).
Local variables are only accessible within the local scope, regardless of whether the
local scope is defined within a static context.

(e)

The [] notation can be placed both after the type name and after the variable name
in an array declaration. Multidimensional arrays are created by constructing
arrays that can contain references to other arrays. The expression new int[4]1[] will
create an array of length 4, which can contain references to arrays of int values. The
expression new int[4] [4] will also create a two-dimensional array, but will in addi-
tion create four more one-dimensional arrays, each of length 4 and of the type
int[]. References to each of these arrays are stored in the two-dimensional array.
The expression int[][4] will not work, because the arrays for the dimensions must
be created from left to right.

(a), (c), and (d)

The size of the array cannot be specified, as in (b) and (e). The size of the array is
given implicitly by the initialization code. The size of the array is never specified
in the declaration of an array reference. The size of an array is always associated

with the array instance (on the right-hand side), not the array reference (on the left-
hand side).

(e)

The array declaration is valid, and will declare and initialize an array of length 20
containing int values. All the values of the array are initialized to their default
value of 0. The for(;;) loop will print all the values in the array—that is, it will
print 0 twenty times.

3 DECLARATIONS 1679

3.10

3.11

3.12

3.13

3.14

3.15

(d)

The program will print 0 false 0 null when run. All the instance variables, and
the array element, will be initialized to their default values. When concatenated
with a string, the values are converted to their text representation. Notice that the
null literal is converted to the string "nu11", rather than throwing a Nul1Pointer-
Exception.

(b)

Evaluation of the actual parameter i++ yields 0, and increments i to 1 in the pro-
cess. The value 0 is copied into the formal parameter i of the method addTwo() dur-
ing method invocation. However, the formal parameter is local to the method, and
changing its value does not affect the value in the actual parameter. The value of
the variable i in the main() method remains 1.

(d)

The variables a and b are local variables of type int. When these variables are
passed as arguments to another method, the method receives copies of the primi-
tive values in the variables. The actual variables are unaffected by operations per-
formed on the copies of the primitive values within the called method. The
variable bArr contains a reference value that denotes an array object containing
primitive values. When the variable is passed as a parameter to another method,
the method receives a copy of the reference value. Using this reference value, the
method can manipulate the object that the reference value denotes. This allows the
elements in the array object referenced by bArr to be accessed and modified in the
method inc2().

(c)

In (a) and (b), the arguments are encapsulated as elements in the implicitly created
array that is passed to the method. In (c), the int array object itself is encapsulated
as an element in the implicitly created array that is passed to the method. (a), (b),
and (c) are fixed arity calls. Note that int[] is not a subtype of Object[]. In (d), (e),
and (f), the argument is a subtype of Object[], and the argument itself is passed
without the need for an implicitly created array—that is, these are fixed arity
method calls. However, in (d) and (e), the compiler issues a warning that both fixed
arity and variable arity method calls are feasible, but chooses fixed arity method
calls.

(b)
Local variable type inference with var is not allowed in a multiple-declaration
statement, as at (2).

(d), (e), and (f)

The restricted keyword var cannot be used as a return type or as the type of a for-
mal parameter, ruling out (a), (b), and (c).

The signature of the method call divide(int, int) is assignment compatible with
the method signatures divide(int, int), divide(int, double), and divide(double,
int) in (d), (e), and (f), respectively. The double value of the expression in the return

1680

4.1

4.2

4.3

4.4

4.5

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

statement in the divide() method is assignment compatible with the return type
double of the method headers in (d), (e), and (f).

Control Flow

(d)

The program will display the letter b when run. The second if statement is evalu-
ated since the boolean expression of the first if statement is true. The else clause
belongs to the second if statement. Since the boolean expression of the second i f
statement is false, the if block is skipped and the else clause is executed.

(c)
The case label value 2 * iloc is a constant expression whose value is 6, the same
as the switch expression. Fall-through results in the program output shown in (c).

(c)

(a) contains a switch statement. Note that there is no break statement associated
with the first case label, thus execution falls through to the second case label and
assigns the string "Composite" to the reference result, which is then printed.

(b) uses a switch expression to yield a result. However, it does not provide an
exhaustive set of case labels and will fail to compile without the default label.

(c) uses the identifier yield as both a variable name and a contextual keyword in
the yield statement. There is no fall-through, and the switch expression yields the
string "Prime" which is printed.

(d) is mixing two different types of notations for the switch constructs: the arrow
notation and the colon notation, which is not permitted.

(a)

The value 1 of the price variable matches the case constant 1 in the first case label,
and in this case the discount is calculated by subtracting 1 from the value of price,
which results in the value of 0. This code uses a switch expression with the arrow
notation, so no fall-through to the next case label can occur. Case labels do not need
to be listed in any particular order. The switch expression is exhaustive, because the
case labels and the default label cover the range of int values. Code will compile
and when executed will yield the value 0.

(e)

The loop body is executed twice and the program will print 3. The first time the
loop is executed, the variable i changes value from 1 to 2 and the variable b changes
value from false to true. Then the loop condition is evaluated. Since b is true, the
loop body is executed again. This time the variable i changes value from 2 to 3 and
the variable b changes value from true to false. The loop condition is now evalu-
ated again. Since b is now false, the loop terminates and the current value of 1 is
printed.

4 CONTROL FLOW 1681

4.6

4.7

4.8

4.9

4.10

4.11

(b) and (e)

Both the first and the second numbers printed will be 10. Both the loop body and
the update expression will be executed exactly 10 times. Each execution of the loop
body will be directly followed by an execution of the update expression. After-
wards, the condition j < 10 is evaluated to see whether the loop body should be
executed again.

iz

The code will compile without error, but will never terminate when run. All the
sections in the for header are optional and can be omitted (but not the semicolons).
An omitted loop condition is interpreted as being true. Thus a for(;;) loop with
an omitted loop condition will never terminate, unless an appropriate control
transfer statement is encountered in the loop body. The program will enter an infi-
nite loop at (4).

(a) and (d)

"i=1, j=0"and "i=2, j=1"are part of the output. The variable i iterates through the
values 0, 1, and 2 in the outer loop, while j toggles between the values 0 and 1 in
the inner loop. If the values of i and j are equal, the printing of the values is
skipped and the execution continues with the next iteration of the outer loop. The
following can be deduced when the program is run: variables i and j are both 0
and the execution continues with the update expression of the outer loop. "i=1,
j=0"is printed and the next iteration of the inner loop starts. Variables i and j are
both 1 and the execution continues with the update expression of the outer loop.
"i=2, j=0"is printed and the next iteration of the inner loop starts. "i=2, j=1"is
printed, j is incremented, j < 2 is false, and the inner loop ends. Variable 1 is incre-
mented, i < 3is false, and the outer loop ends.

(c) and (d)

The element type of the array nums must be assignment compatible with the type
of the loop variable (i.e., int). Only the element type in (c), Integer, can be automat-
ically unboxed to an int. The element type in (d) is int.

(d) and (e)

In the header of a for(:) loop, we can only declare one local variable. This rules out
(a) and (b), as they specify two local variables. Also, the array expression in (a), (b),
and (c) is not valid. Only (d) and (e) specify a legal for(:) header.

(a), (b), and (c)

Changing the value of the variabTe does not affect the data structure being iterated

over. The for(:) loop cannot run backwards. We cannot iterate over several data
structures simultaneously in a for(:) loop, as the syntax does not allow it.

1682

5.1

5.2

5.3

54

5.5

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

Object-Oriented Programming

(a) and (c)

Bar is a subclass of Foo that overrides the method g(). The statement a.j = 5isnot
legal, since the member j in the class Bar cannot be accessed through a Foo refer-
ence. The statement b.i = 3 is not legal either, since the private member i cannot
be accessed from outside of the class Foo.

(g)

It is not possible to invoke the doIt() method in A from an instance method in class
C. The method in C needs to call a method in a superclass two levels up in the inher-
itance hierarchy. The super.super.doIt() strategy will not work, since super is a
keyword and cannot be used as an ordinary reference, nor accessed like a field. If
the member to be accessed had been a field or a static method, the solution would
be to cast the this reference to the class of the field and use the resulting reference
to access the field, as illustrated in (f). Field access is determined by the declared
type of the reference, whereas the instance method to execute is determined by
the actual type of the object denoted by the reference at runtime.

(e)

The code will compile without errors. None of the calls to a max() method are
ambiguous. When the program is run, the main() method will call the max()
method on the C object referred to by the reference b with the parameters 13 and 29.
This method will call the max() method in B with the parameters 23 and 39. The
max () method in B will in turn call the max() method in A with the parameters 39 and
23. The max () method in A will return 39 to the max () method in B. The max() method
in B will return 29 to the max() method in C. The max () method in C will return 29 to
the main() method.

(g)

In the class Car, the static method getModeIName() hides the static method of the
same name in the superclass Vehicle. In the class Car, the instance method get-
RegNo() overrides the instance method of the same name in the superclass Vehicle.
The declared type of the reference determines the method to execute when a static
method is called, but the actual type of the object at runtime determines the
method to execute when an overridden method is called.

(e)

The class MySuper does not have a no-argument constructor. This means that con-
structors in subclasses must explicitly call the superclass constructor and provide
the required parameters. The supplied constructor accomplishes this by calling
super(num) in its first statement. Additional constructors can accomplish this either
by calling the superclass constructor directly using the super() call, or by calling
another constructor in the same class using the this() call which in turn calls the
superclass constructor. (a) and (b) are not valid, since they do not call the super-
class constructor explicitly. (d) fails, since the super() call must always be the first

5 OBJECT-ORIENTED PROGRAMMING 1683

5.6

5.7

5.8

5.9

5.10

5.11

statement in the constructor body. (f) fails, since the super() and this() calls cannot
be combined.

(b)

In a subclass without any declared constructors, the implicit default constructor
will call super(). Use of the super() and this() statements is not mandatory as long
as the superclass has a no-argument constructor. If neither super() nor this() is
declared as the first statement in the body of a constructor, then the default super()
will implicitly be the first statement. A constructor body cannot have both a
super() and a this() statement. Calling super() will not always work, since a
superclass might not have a no-argument constructor.

(d)

The program will print 12 followed by Test. When the main() method is executed,
it will create a new instance of B by passing "Test" as an argument. This results in
a call to the constructor of B that has one String parameter. The constructor does
not explicitly call any superclass constructor nor any overloaded constructor in B
using a this() call, but instead the no-argument constructor of the superclass A is
called implicitly. The no-argument constructor of A calls the constructor in A that
has two String parameters, passing it the argument list ("1", "2"). This constructor
calls the constructor with one String parameter, passing the argument "12". This
constructor prints the argument, after implicitly invoking the no-argument con-
structor of the superclass Object. Now the execution of all the constructors in A is
completed, and execution continues in the constructor of B. This constructor now
prints the original argument "Test" and returns to the main() method.

(c)

Any non-final class can be declared abstract. A class cannot be instantiated if the
class is declared abstract. The declaration of an abstract method cannot provide
an implementation. The declaration of a non-abstract method must provide an
implementation. If any method in a class is declared abstract, then the class must
be declared abstract, so (a) is invalid. The declaration in (b) is not valid, since it
omits the keyword abstract in the method declaration. The declaration in (d) is not
valid, since it omits the keyword class. In (e), the return type of the method is miss-
ing.

(b)

Since the method is abstract, it cannot be inserted at (1) because class Animal is not
abstract—thus ruling out (a) and (c). Class Cat is abstract, and the method can be
inserted at (2)—thus ruling out (d).

(d)

We cannot create an object of an abstract class with the new operator.

(d)
An instance of Bacteria can be assigned to the org variable at (2), since a supertype
reference can refer to a subtype object. There is no @verload annotation.

1684

5.12

5.13

5.14

5.15

5.16

517

5.18

5.19

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(a) and (b)

The extends clause is used to specify that a class extends another class. A subclass
can be declared abstract regardless of whether the superclass was declared
abstract. Private, overridden, and hidden members from the superclass are not
inherited by the subclass. A class cannot be declared both abstract and final, since
an abstract class needs to be extended to be useful, and a final class cannot be
extended. The accessibility of the class is not limited by the accessibility of its mem-
bers. A class with all members declared private can still be declared pubTic.

(c)
Only a final class cannot be extended, as in (c). (d) will fail to compile. A class can-
not be declared both final and abstract, as in (d).

(c)

Line (3), void k() { i++; 1}, can be re-inserted without introducing errors. Re-
inserting line (1) will cause the compilation to fail, since MyOtherClass will try to
override a final method. Re-inserting line (2) will fail, since MyOtherClass will no
longer have the no-argument constructor. The main() method needs to call the no-
argument constructor. Re-inserting line (3) will work without any problems, but
reinserting line (4) will fail, since the method will try to access a private member
of the superclass.

(a) and (c)

Abstract classes can declare both final methods and non-abstract methods. Non-
abstract classes cannot, however, contain abstract methods. Nor can abstract
classes be final. Only interfaces can declare default methods.

(d)

There is no problem compiling the code.

(a)
A final class cannot have abstract methods, as a final class is a concrete class, pro-
viding implementation for all methods in the class.

(b) and (g)

The keywords protected and final cannot be applied to interface methods. The
keyword public is implied, but can be specified for abstract and default interface
methods. The keywords private, default, abstract, and static can be specified for
private, default, abstract, and static methods, respectively. The keywords pri-
vate, default, and static are required for private, default, and static methods,
respectively, but the keyword abstract is optional as an abstract method is under-
stood to be implicitly abstract.

(e)

The static method printSlogan() is not inherited by the class Firm. It can only be
invoked by using a static reference—that is, the name of the interface in which it is
declared, regardless of whether the call is in a static or a non-static context.

5 OBJECT-ORIENTED PROGRAMMING 1685

5.20

521

5.22

5.23

5.24

5.25

(c)

The instance method at (3) overrides the default method at (1). The static method
at (2) is not inherited by the class RaceA. The instance method at (4) does not over-
ride the static method at (2).

The method to invoke by the call at (5) is determined at runtime by the object type
of the reference, which in this case is Athlete, resulting in the method at (3) being
invoked. Similarly, the call at (6) will invoke the instance method at (4).

(d)

The code will compile without errors. The class MyClass declares that it implements
the interfaces Interfacel and Interface2. Since the class is declared abstract, it
does not need to implement all abstract method declarations defined in these
interfaces. Any non-abstract subclasses of MyClass must provide the missing
method implementations. The two interfaces share a common abstract method
declaration, void g(). MyClass provides an implementation for this abstract
method declaration that satisfies both Interfacel and Interface2. Both interfaces
provide declarations of constants named VAL_B. This can lead to ambiguity when
referring to VAL_B by its simple name from MyClass. The ambiguity can be resolved
by using the qualified names Interfacel.VAL_B and Interface2.VAL_B. However,
there are no problems with the code as it stands.

(b)

The compiler will allow the statement, as the cast is from the supertype (Super) to
the subtype (Sub). However, if at runtime the reference x does not denote an object
of the type Sub, a ClassCastException will be thrown.

(b)

The expression (o instanceof B) will return true if the object referred to by o is of
type B or a subtype of B. The expression (! (o instanceof C)) will return true unless
the object referred to by o is of type C or a subtype of C. Thus the expression (o
instanceof B) && (!(o instanceof C)) will only return true if the object is of type
B or a subtype of B that is not C or a subtype of C. Given objects of the classes A, B,
and G, this expression will only return true for objects of class B.

(d)

The program will print all the letters I, J, C, and D at runtime. The object referred to
by the reference x is of class D. Class D extends class C and implements J, and class
Cimplements interface I. This makes I, J, and C supertypes of class D. The reference
value of an object of class D can be assigned to any reference of its supertypes and
is, therefore, an instanceof these types.

(c)

The calls to the compute() method in the method declarations at (2) and at (3) are to
the compute () method declaration at (1), as the argument is always an int[].

The method call at (4) calls the method at (2). The signature of the call at (4) is
compute(int[], int[])
which matches the signature of the method at (2). No implicit array is created.

1686

5.26

5.27

5.28

5.29

5.30

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

The method call at (5) calls the method at (1). An implicit array of int is created to
store the argument values.

The method calls at (6) and (7) call the method at (3). Note the type of the variable
arity parameter at (3): an int[]1[]. The signature of the calls at (6) and (7) is

compute(int[], int[]1[])
which matches the signature of the method at (3). No implicit array is created.

?)

The instanceof pattern match operator can introduce a pattern variable in certain
boolean expressions. In the conditional of the if statement, both operands of the
short-circuit & operator must be true for the pattern variable s to be introduced in
the if block—the scope of variable s is then the if block, and s is not accessible in
the else block. The variable s is thus out of scope in the else block, and the code
will not compile.

(d)

For the instanceof pattern match operator, the pattern type (i.e., the type specified
for the right operand) must be a subtype of the expression type (i.e., the type of the
left operand). This is not the case in (a), (b), or (e). In (a) and (b), both the pattern
type and the expression type are Integer, and in (e), the pattern type Number is a
supertype of the expression type Integer. Thus (a), (b), and (e) will result in a com-
pile-time error.

In (c), the expression type Integer is incompatible with the pattern type String for
comparing types, as one cannot be cast to the other, thus resulting in a compile-
time error.

In (d), the pattern type Integer is a subtype of the expression type Number and will
compile without any problem.

(a) and (c)

An instanceof pattern match operator returns false if the reference is nu11; there-
fore, it will not throw a NuTl1PointerException. A pattern variable is only introduced
when the instanceof pattern match operator returns true.

(e)

The program will print 2 when System.out.printin(ref2.f()) is executed. The
object referenced by ref2 is of class C, but the reference is of type B. Since B contains
a method f(), the method call will be allowed at compile time. During execution,
it is determined that the object is of class C, and dynamic method lookup will cause
the overriding method in C to be executed.

(c)

The program will print 1 when run. The f() methods in A and B are private, and
are not accessible by the subclasses. Because of this, the subclasses cannot overload
or override these methods, but simply define new methods with the same signa-
ture. The object being called is of class C. The reference used to access the object is
of type B. Since B contains a method g(), the method call will be allowed at compile
time. During execution, it is determined that the object is of class C, and dynamic

5 OBJECT-ORIENTED PROGRAMMING 1687

5.31

5.32

5.33

5.34

5.35

method lookup will cause the overriding method g() in B to be executed. This
method calls a method named f. It can be determined during compilation that this
can only refer to the f() method in B, since the method is private and cannot be
overridden. This method returns the value 1, which is printed.

(b), (c), and (d)

The code as it stands will compile. The use of inheritance in this code defines a
Planet is-a Star relationship. The code will fail if the name of the field starName is
changed in the Star class, since the subclass Planet tries to access it using the name
starName. An instance of Planet is not an instance of HeavenlyBody. Neither Planet
nor Star implements HeavenlyBody.

(d)

An enum type can be run as a standalone application, if it provides the appropriate
main() method. The constants need not be qualified when referenced inside the
enum type declaration. The constants are static members. The toString() method
always returns the name of the constant, unless it is overridden.

(b)

(1), (2), and (3) define constant-specific class bodies that override the toString()
method. For constants that do not override the toString() method, the name of the
constant is returned.

(c)

An enum type cannot be instantiated to create more objects than those already cre-
ated implicitly for its constants. All enum types override the equals() method from
the Object class. The equals() method of an enum type compares its constants for
equality according to reference equality (the same as with the == operator) based
on their ordinal values. This equals() method is final.

(d) and (e)

In (a), the compiler recognizes a non-canonical constructor with no parameters in
the record class definition. The first statement in such a non-canonical constructor
must be an explicit invocation of the canonical constructor using the this() expres-
sion. For example, the following constructor declaration will compile, but it will
not give the desired result.

public Product() {

this(0, "No name", 0.00);

}
However, specifying the required parameters in the constructor header will result
in the normal canonical constructor that will compile, and the code will print the
right result:

public Product(int id, String name, double price) {

(b) does not compile because the parameter names in the normal canonical con-
structor do not match the ones defined in the header of the record class.

1688

5.36

5.37

5.38

5.39

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

In (c), the compiler recognizes a record class that has no component fields. The con-
structor declared is a non-canonical constructor that must have an explicit invoca-
tion of the no-argument implicit canonical constructor using the this () expression.
For example, the following constructor declaration will compile, but will not give
the desired result.

public Product(int id, String name, double price) {

thisQ;

}
However, specifying the field components in the record class header will make the
code compile and give the right result:

public record Product(int id, String name, double price) {

}
(d) correctly initializes a record using the compact constructor. The name will be
stored in uppercase.
(e) correctly initializes a record using the implicit canonical constructor. The record
class overrides the method toString() that returns the name field value represented
as an uppercase String.
(f) correctly initializes a record using the implicit canonical record constructor, but
its overridden toString() method accesses the fields directly, without converting
the name field to uppercase. It does not invoke the name() method.

(d)

The compiler automatically generates an implementation of the equals() method
for a record class, if one is not provided. The equals() method added by the com-
piler will compare all component fields of the record class. This means that the
equals() method will return true, but the equality operator == will return false, as
the two records that are created are distinct objects that have the same state.

(c)

All component fields defined by a record class are immutable. A record class can
only declare static fields in addition to the component fields specified in its header.
The compiler automatically generates the get methods for the component fields of
the record class, but not the set methods, since such fields are immutable. Record
classes implicitly extend the java.lang.Record class. Record classes cannot have an
explicit extends clause.

(c)

Sealed classes can be abstract. In fact, this is often the case, as the abstract sealed
class is intended to be extended by its permitted subclasses. A non-sealed class can
also be abstract and can be freely extended. However, a sealed class can only be
extended by its permitted subclasses. A class that extends a sealed class must be
either final, sealed, or non-sealed.

(c)
In the code, subtypes Y and Z can be interfaces or classes that can either extend or
implement the sealed interface X. A class or an interface that is marked sealed must

6 ACCESS CONTROL 1689

6.1

6.2

6.3

be defined with the permits clause that specifies its permitted subtypes, unless the
permitted subtypes are specified in the same compilation unit. Since the classes
and interfaces are all public, each is defined in its own compilation unit.

In (a), interface Z is marked sealed, but does not provide the permits clause or its
permitted subtypes in the same compilation unit.

A permitted subtype of a sealed supertype must be explicitly marked as either
final, non-sealed, or sealed. In (b), interface Z is not marked with any of these
markers, so it will not compile. (d) has the exact same problem with class Y.

In (c), interface Z is correctly marked as sealed, with the appropriate permits clause,
and class Y correctly implements both its sealed superinterfaces X and Z.

Access Control

(a) and (c)

Bytecode of all reference type declarations in the file is placed in the designated
package, and all reference type declarations in the file can access the imported

types.

(e)

Both classes are in the same package app, so the first 2 import statements are unnec-
essary. The package java.lang is always imported in all compilation units, so the
next two import statements are unnecessary. The last static import statement is
necessary to access the static variable frame in the Window class by its simple name.

(b), (c), (d), and (e)
In (a), the import statement imports types from the mainpkg package, but Window is
not one of them.

In (b), the import statement imports types from the mainpkg.subpkgl package, and
Window is one of them.

In (c), the import statement imports types from the mainpkg.subpkg2 package, and
Window is one of them.

In (d), the first import statement is a type-import-on-demand statement and the
second import statement is a single-type-import statement. Both import the type
Window. The second one overrides the first one.

In (e), the first import statement is a single-type-import statement and the second
import statement is a type-import-on-demand statement. Both import the type
Window. The first one overrides the second one.

In (f), both import statements import the type Window, making the import ambigu-
ous.

In (g), both single-type-import statements import the type Window. The second
import statement causes a conflict with the first one.

1690

6.4

6.5

6.6

6.7

6.8

6.9

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(c) and (e)

The name of the class must be fully qualified. A parameter list after the method
name is not permitted. (c) illustrates single static import, and (e) illustrates static
import on demand.

(b) and (d)

In (a) and (c), class A cannot be found. In (e) and (f), class B cannot be found—there
is no package under the current directory /top/wrk/pkg to search for class B. Note
that specifying pkg in the classpath in (d) is superfluous. The parent directory of the
package must be specified—that is, the location of the package.

(d) and (e)

Static field y in class a.b.X is accessed in the method xyz() of class a.b.c.Z. Static
import allows static members from reference type declarations in other packages
to be accessed by their simple names.

This rules out (a) as it is a type-import-on-demand statement for all reference type
declarations in package a.b, and also (b) as it is a type-import-on-demand state-
ment from class a.b.X. (a) imports class X, but (b) does not import any type, as class
X does not declare any non-static inner class members.

(d) is a static import-on-demand statement, meaning it imports all static members
of the class a.b.X, including y which can be accessed by its simple name. (e) is a sin-
gle-static-import statement, meaning only the designated static member y from
class a.b.X is imported and can be accessed by its simple name.

(a) and (d)

The class Farm in package habitat accesses classes Cat and Cow by their simple
names from package 1ife.animals. (a) is a type-import-on-demand of all reference
type declarations from package Tife.animals, including Cat and Cow. (b) and (c) are
ruled out as these are static imports. (d) imports the classes Cat and Cow individu-
ally.

(d)

Packages are typically mapped to directories in a file system. A subpackage is an
autonomous package that just happens to map to a subdirectory of a directory that
represents some other package. There is no relationship between a package and its
subpackages. Each package is treated independently, regardless of whether it
appears to be implemented as a subdirectory, ruling out (a) and (b).

(c) is incorrect because reference types and static members of types in other pack-
ages can be accessed by their fully qualified names, rather than using import state-
ments.

Import statements are not present in the compiled code at all, as type names are
always replaced with fully qualified names by the compiler.
(b) and (e)

If no access modifier (public, protected, or private) is given in the member declar-
ation of a class, the member is only accessible by classes in the same package.

7 EXCEPTION HANDLING 1691

6.10

6.11

6.12

6.13

7.1

A subclass does not have access to members with package accessibility declared in
a superclass, unless they are in the same package.
Local variables cannot be declared static or have an access modifier.

(b)

Outside the package, the member j is accessible to any class, whereas the member
k is only accessible to subclasses of MyClass.

The field i has package access, and is only accessible by classes inside the package.
The field j has public access, and is accessible from anywhere. The field k has pro-
tected access, and is accessible from any class inside the package and from sub-
classes anywhere. The field 1 has private access, and is only accessible within the
class itself.

(b)

A private member is only accessible in the class in which it is declared. If no access
modifier has been specified for a member, the member has package accessibility.
The keyword default is not an access modifier. A member with package access is
only accessible from classes in the same package. Subclasses in other packages can-
not access a member with package accessibility.

(d)

A class that is declared as final cannot be extended. Making a class final is not
enough to prevent its state from being modified. A static modifier can be applied
to inner classes, but this is not relevant to the question of immutability. A field
within an immutable object can refer to a mutable object, which means that mem-
bers of an immutable object are not automatically immutable.

(a)

In (a), marking the field name private means it can only be accessible in the class. It
can only be initialized once by the constructor when the object is created, and
removing the setName() method means the value of private field name cannot be
changed. The state of the object is thus immutable.

In (b), the assignment in the setName() method will not compile as it changes the
value of the final field name which has already been initialized in the constructor.
In (c), the assignment in the constructor will not compile as it changes the value of
the final field name which has already been initialized in its declaration.

Exception Handling

(d)

The program will only print 1, 4, and 5, in that order. The expression 5/k will throw
an ArithmeticException, since k equals 0. Control is transferred to the first catch
clause, since it is the first catch clause that can handle the arithmetic exceptions.
This exception handler simply prints 1. The exception has now been caught and
normal execution can resume. Before leaving the try statement, the finally clause

1692

7.2

7.3

7.4

7.5

7.6

7.7

7.8

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

is executed. This finally clause prints 4. The last statement of the main() method
prints 5.

(b) and (e)
If run with no program arguments, the program will print The end. If run with one
program argument, the program will print the specified argument followed by The
end. The finally clause will always be executed, no matter how control leaves the
try block.

(c) and (d)

Normal execution will only resume if the exception is caught by the method. The
uncaught exception will propagate up the JVM stack until some method handles
it. An overriding method need only declare that it can throw a subset of the
checked exceptions the overridden method can throw. The main() method can
declare that it throws checked exceptions just like any other method. The finally
clause will always be executed, no matter how control leaves the try block.

(b)

The only thing that is wrong with the code is the ordering of the catch and finally
clauses. If present, the finally clause must always appear last in a try-catch-
finally construct. Note that since B is a subclass of A, catching A is sufficient to catch
exceptions of type B.

(b)

An invocation of the average() method throws an ArithmeticException, which is
then caught in the main() method. The catch block prints "error". This means that
the execution of the average() method is stopped, and the method does not return
any value, leaving the local variable value still initialized to 1, which is printed.

(e)

A null value is passed as an argument to the reaction() method, resulting in a
PlayerException being thrown, containing the "Invalid action" message. This
exception is then caught in the main() method, where its error message is assigned
to the local variable message in the catch block. As this exception was successfully
handled, normal execution resumes. The print statement prints the error message
"Invalid action".

(c)

As a null value is passed to the readFile() method, it throws a FileNotFound-
Exception, which is a subclass of I0Exception. This exception is caught by the cor-
responding catch block in the main() method, printing "I0 error: invalid file
name". Upon resumption of normal execution, the finally block prints " finally",
followed by the last print statement printing " the end".

(g)

The readFile() method executes normally, which means that no catch block is exe-
cuted in the main() method. The finally block prints "finally" and the last print
statement prints " the end".

7 EXCEPTION HANDLING 1693

7.9

7.10

7.11

7.12

(d)

A nul1 value is passed to the readFile() method which then throws an unchecked
NulT1PointerException, which is a subclass of RuntimeException. It is not required to
explicitly specify unchecked exceptions in the throws clause or to handle them. The
Nul1PointerException is propagated to the invoking method main(), where it is
caught by the catch block that catches an Exception, since RuntimeException is a
subclass of Exception. The catch block prints "Other error: invalid file name".
Although this catch block contains a return statement, the finally block is exe-
cuted first, printing " finally", before returning from the main() method. Thus the
last print statement in the main() method is not executed.

(b), (c), and (e)

(b), (c), and (e) correspond to (2), (3), and (5). FileNotFoundException is thrown by
the constructor call FileReader(filename). The close() method of the Buff-
eredReader throws an IOException. Either the try-with-resources statement must
catch it or the exception must be specified in the throws clause of the method—the
catch-or-declare rule. (1), (4), and (6) do not fulfill this criteria. Also, the resource
variables are final and cannot be assigned to in the body of the try-with-resources
statement, ruling out (7). At (5), the resource declaration statements are valid.

(h)

The top-level try block in the method justDoIt() throws an IOException. The
nested try block in the finally clause throws an EOFException that is caught and
associated as a suppressed exception with the I0Exception. It is the I0Exception that
is propagated. The IOException is caught in the catch clause in the main() method
and its information is printed, including its suppressed exception EOFException.
The supertype exception references are used polymorphically to handle objects of
subtype exceptions.

iz

In (a), the program does not compile because the checked Exception thrown in the
close() method does not comply with the catch-or-declare rule.

In (b), although the close() method will abide by the catch-or-declare rule, the
main() method does not.

In (c), adding throws Exception clause only to the main() method does not change
the fact that the close() method does not abide by the catch-or-declare rule.

In (d), both methods abide by the catch-or-declare rule. When run, the program
will throw an Exception that is not caught.

In (e), adding catch (Exception e) {} clause to the try statement in the main()
method does not change the fact that the close() method does not abide by the
catch-or-declare rule.

In (f), the close() method will abide by the catch-or-declare rule, and the main()
method will catch and handle the exception thrown at runtime.

1694

7.13

7.14

7.15

7.16

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(a), (b), and (c)
In (a), the exception parameter e is implicitly final and cannot be reassigned in the
multi-catch clause.

In (b), in the two assignments to the exception parameter e, objects of the super-
class I0Exception cannot be assigned to references of subtypes EOFException and
FileNotFoundException.

In (c), in the assignment to the exception parameter e of type Exception, an object
of the subtype IOException is assigned to e, but an exception of type Exception is
thrown in the catch clause. This exception is not covered by the subtype
IOException specified in the throws clause. In other words, Exception thrown in the
catch clause is not handled.

In (d), the compiler can infer that only FileNotFoundException can be thrown in the
try statement. Such an exception can only be thrown in the catch clause, as the
parameter e of type Exception can be inferred to be effectively final, and can thus
only refer to a FileNotFoundException. This exception is covered by the throws
clause.

In (e), the compiler can infer that only FileNotFoundException can be thrown in the
try statement. This exception is caught by parameter e of the superclass
IOException. IOException is covered by the throws clause that specifies its supertype
Exception.

(a)

In this code example, the Resource object is used in a try-with-resources statement.
Its action() method will print "action " and it will be closed by the implicit finally
block by invoking the close() method that prints "closure ". There are no excep-
tions thrown. The last print statement prints " the end".

(b)

The Resource object is used in the try-with-resources statement, which means it
will be closed by the implicit finally block invoking the close() method after the
execution of the try block.

There are two exceptions thrown in the code: The first is an I0OException that is
thrown by the action() method, and the second is thrown by the close() method
of the Resource class. The I0Exception is then caught in the main() method. How-
ever, notice that the I0Exception handler does not attempt to retrieve and print
information about suppressed exceptions thrown by the implicit finally block of
the try-with-resources statement. The catch block prints "I0 action error ". Once
the exception is handled, execution of the rest of the method main() resumes. The
last print statement prints " the end".

(b)

There is no reason why explicit and implicit finally blocks cannot coexist. If an
explicit finally block is added after the try-with-resources statement, its code is
executed after the implicit finally block.

8 SELECTED API CLASSES 1695

8

8.1

8.2

8.3

8.4

8.5

8.6

Selected API Classes

(e)

Neither the hashCode() method nor the equals() method is declared final in the
Object class, and it cannot be guaranteed that implementations of these methods
will differentiate between all objects. All arrays are genuine objects and inherit
from the Object class, including the clone() method.

(b)
Values in the range —128 to +127, inclusive, are boxed in Integer objects and cached
by the method Integer.valueOf(Q).

(c)

There is a minor performance penalty associated with the conversion of a primitive
value to a wrapper object and vice versa. Wrapper references can be assigned the
null value, but they cannot be assigned to a variable of a primitive type. An
attempt to convert an uninitialized wrapper reference to a primitive value will
result in a Nul1PointerException. However, if the reference is a local variable then
the code will not compile.

(b)

Integer objects with a value between —128 and +127 are interned. Therefore, two
references that reference the same interned Integer object will return true when
compared with the == operator—that is, they are aliases. The reference il is
assigned the reference value of a new Integer object with value 10. This Integer
object is interned. The reference 12 is assigned the reference value of this interned
Integer object, instead of creating a new Integer object. The expression i1l == i2is
thus true, resulting in A being printed. The expression i1 == 13 is also true, since
the Integer object referenced by i1 is unboxed to the int value 10 which is also the
value in 13, resulting in B being printed.

However, values boxed by the references x1 and x2 are greater than 127, and there-
fore these references refer to two different Integer objects which are not interned.
The expression x1 == x2 returns the value false. The expression x1 == x3 returns
true, since the Integer object referenced by x1 is unboxed to the int value 1000
which is also the value in x3, resulting in D being printed.

(d)
The expression str.substring(2,5) will extract the substring "kap". The method
extracts the characters from index 2 to index 4, inclusive.

(d)

The program will print str3strl when run. The concat() method will create and
return a new String object, which is the concatenation of the current String object
and the String object passed as an argument. The expression statement strl.con-
cat(str2) creates a new String object, but its reference value is not stored after the
expression is evaluated. Therefore, this String object gets discarded.

1696

8.7

8.8

8.9

8.10

8.11

8.12

8.13

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(d)

The constant expressions "ab" + "12" and "ab" + 12 will, at compile time, be eval-
uated to the string-valued constant "ab12". Both variables s and t are assigned a
reference to the same interned String object containing "ab12". The variable u is
assigned a new String object, created by using the new operator.

(b)

The reference value in the reference strl never changes and it refers to the string
literal "Tower" all the time. The calls to toUpperCase() and replace() return a new
String object whose reference value is ignored.

(d)

The call to the put0() method does not change the String object referred to by the
s1 reference in the main() method. The reference value returned by the call to the
concat() method is ignored.

(b)

The reference value in the reference strl never changes and it refers to the string
literal "Tower" all the time. The calls to toUpperCase() and replace() return a new
String object whose reference value is ignored.

(b)

The substring() method returns the characters from the start index inclusive to the
end index exclusive. The start index is returned by the index0f(' ') method call,
which is the first occurrence of a space character ' ' within the string, namely
index 4. The expression s.index0f(' ', s.index0f(' ') + 1) finds the next occur-
rence of the space character ' ', where the search starts after the first occurrence of
the space character (' '), returning the index 7. As 1is added to this index, the end
index passed to the substring() method is 8. The resulting substring is from index
4 inclusive to index 8 exclusive—thatis, " is ". The strip() method removes both
leading and trailing whitespace from this string, resulting in the string "is". To this
string, the character '-' is concatenated at either end.

(a)

This text block does not have any incidental whitespace because the last line has
no leading whitespace before the closing delimiter of the text block. The while loop
splits the text block into individual lines, extracting a substring from the start to the
line terminator (\n) of each line. The length of each line does not include the line
terminator. The lengths are 3, 5, and 3, as no incidental whitespace is removed. The
length of each line is then printed.

(d)

In (a) and (b), the content of the text block does not start after the line terminator
of the opening delimiter (""").

In (c), the text block does not end with the closing delimiter ("""), but with four
double quotes. Note that there is no requirement that double quotes should be bal-
anced in a text block, and can be specified with or without escaping.

8 SELECTED API CLASSES 1697

8.14

8.15

8.16

8.17

8.18

8.19

In (d), the text block ends correctly, as it uses the \" escape character for the double
quote that should be part of the text block, allowing it to be distinguished from the
closing delimiter. However, the last line of the block will not end with a line termi-
nator. The resulting string literal is "\"a\"\"b\"". When printed, the output will be
a single line containing the characters "a""b".

(e) is syntactically correct because the text block is correctly terminated. However,
in this case the closing delimiter is on a line on its own, resulting in the last line of
the text block content to end with a line terminator. The resulting string literal is
"\"a\"\"b\"\n". When printed, the output will be a line containing the characters
"a""b" followed by a newline.

(f) is incorrect because the last \" escape character results in the subsequent two
double quotes also to be escaped, resulting in no closing delimiter being found—
thatis, \""" results in \"\"\".

(a) and (e)

The content of a text block starts on a new line of text immediately after the line
that contains the opening delimiter, and ends just before the closing delimiter. This
makes (a) correct, but not (b).

A text block is not a subtype of the String class, as the String class is final, and the
type of a text block is String.

Although trailing whitespace is removed from the end of each line in the text block,
only incidental whitespace is removed from the start of each line in the text block.

(a)

The code will fail to compile, since the expression (s == sb) is illegal. It compares
references of two classes that are not related. Also, the StringBuffer class does not
override the equals() method from the Object class, but inherits it.

(e)

The program will compile without errors and will print Have a when run. The con-
tents of the string buffer are truncated to six characters by the method call sb.set-
Length(6).

(c)

The trimtoSize() only changes the capacity to match the length of the string
builder. It does not the change the length of the string builder. The methods
append(), reverse(), and setLength() change the string builder successively by
appending "!" (" 1234 "), reversing the string builder ("! 4321 "), and setting
the length to 5 ("! 43"). The print statement prints |! 43].

(b)

The references sbl and sb2 are not aliases. The StringBuilder class does not over-
ride the equals () method so the result will be the same as with the == operator. The
correct answer is (b).

(a)
The StringBuilder class does not override the hashCode() method, but the String
class does. The references s1 and s2 refer to a String object and a StringBuilder

1698

8.20

8.21

8.22

8.23

8.24

8.25

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

object, respectively. The hash values of these objects are computed by the hash-
Code() method in the String and the Object class, respectively—giving different
results. The references s1 and s3 refer to two different String objects that are equal,
hence they have the same hash value.

(b)

String builders are mutable. When created, the string builder s1 has the sequence
"W". The call to the append () method in the put0() method appends "0", resulting in
"W0". On return from the put0() method, the call to the append() method in the
main() method appends "W!" to the string builder. The string builder s1 now con-
tains the sequence "WOW!" which is printed.

(i)

A StringBuilder is manipulated by different methods. First, the string "12" is
appended, then the string "34" is inserted at index 1, resulting in the string "1342"
in the StringBuilder object. Next, the delete() method does not modify the con-
tents because the start and the end indexes are the same. Finally, the replace()
method replaces the characters between the start indices 0 inclusive and the end
index 1 exclusive with an empty string—that is, effectively removing the character
'1' from index 0. The resulting string is "342".

(b)

Remember that the default capacity of the empty StringBuilder is 16 characters,
which can change as its contents are modified. The string "42" is appended first,
then the second character is deleted from this string, resulting in the StringBuilder
object containing the string "4". The print statement concatenates the string "4" in
the StringBuilder with the sum of its capacity (which still has the default value 16)
and its length (which is 1)—in other words, the string "4" is concatenated with 17.
The resulting string "417" is printed.

(b) and (d)

The method call Math.ceil(v) returns the double value 11.0, which is printed as
11.0 at (1), but as 11 at (4) after conversion to an int.

The method call Math. round(v) returns the Tong value 11, which is printed as 11 at
(2).

The method call Math.floor(v) returns the double value 10.0, which is printed as
10.0 at (3), but as 10 at (5) after conversion to an int.

(b) and (d), corresponding to (2) and (4), will print 11.

(b)

The value -0.5 is rounded up to 0 and the value 0.5 is rounded up to 1.
(b), (c), and (d)

The expression will evaluate to one of the numbers 0, 1, 2, or 3. Each number has
an equal probability of being returned by the expression.

9 NESTED TYPE DECLARATIONS 1699

9

9.1

9.2

9.3

9.4

9.5

9.6

Nested Type Declarations

(e)

The code will compile and print 123 at runtime. An instance of the Outer class will
be created and the field secret will be initialized to 123. A call to the createInner()
method will return the reference value of the newly created Inner instance. This
object is an instance of a non-static member class and is associated with the outer
instance. This means that an object of a non-static member class has access to the
members within the outer instance. Since the Inner class is nested in the class con-
taining the field secret, this field is accessible to the Inner instance, even though
the field secret is declared private.

(b) and (e)

A static member class is in many respects like a top-level class, and can contain
non-static fields. Instances of non-static member classes are created in the context
of an outer instance. The inner instance is associated with the outer instance. Sev-
eral non-static member class instances can be created and associated with the same
outer instance. Static member classes do not have any implicit outer instance. A
static member interface, just like top-level interfaces, cannot contain non-static
fields. Nested interfaces are always static.

(d)

The program will compile without error, and will print 1, 3, 4, in that order, at run-
time. The expression B. this.val will access the value 1 stored in the field val of the
(outer) B instance associated with the (inner) C object referenced by the reference
obj. The expression C.this.val will access the value 3 stored in the field val of the
C object referenced by the reference obj. The expression super.val will access the
field val from A, the superclass of C.

(c) and (d)

The class Inner is a non-static member class of the Outer class, and its qualified
name is Outer.Inner. The Inner class does not inherit from the Outer class. The
method named doIt is, therefore, neither overridden nor overloaded. Within the
scope of the Inner class, the doIt() method of the Outer class is hidden by the doIt()
method of the Inner class.

(e)

Non-static member classes, unlike top-level classes, can have any access modifier.
Static member classes can be declared in a top-level class and any nested class.
Methods in all nested classes can be declared static. Only static member classes
can be declared static. Declaring a class static only means that instances of the
class are created without having an outer instance. This has no bearing on whether
the members of the class can be static or not.

(c), (d), and (e)
The method at (1) will not compile, since the parameter i is neither final nor effec-
tively final, and therefore not accessible from within the inner class. The syntax of

1700

9.7

9.8

9.9

9.10

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

the anonymous class in the method at (2) is not correct, as the empty argument list
is missing. The parameter i at (3) is effectively final, and at (4) it is final. The
method at (5) is legally declared.

(d)

Other static members, not only static final fields declared as constant variables,
can be declared within a non-static member class. Members in outer instances are
directly accessible using simple names (provided they are not hidden). Fields in
nested static member classes need not be final. Anonymous classes cannot have
constructors, since they have no names. Nested classes define types that are dis-
tinct from the enclosing class, and the instanceof type comparison operator does
not take the type of the outer instance into consideration.

(d)

Note that the nested classes are locally declared in a static context.

(a) and (b) refer to the field strl in Inner. (c) refers to the field strl in Access. (e)
requires the Helper class to be in the Inner class in order to compile, but this will
not print the right answer. (f), (g), and (h) will not compile, as the Helper local class
cannot be accessed using the enclosing class name.

(c)

The field t denotes an instance of the anonymous inner class that extends the Test
class. The toString() method is implicitly called on t in the print statement. The
anonymous inner class overrides the toString() method, which is invoked. It
returns the result of the following return statement:

return this.x + super.toString() + x;

Here, both this.x and x refer to the field x declared in the anonymous class, which
has the character value '>'. This field shadows the local variable x in the main()
method, which in turn shadows the field x in the Test class.
The call super.toString() results in the toString() method in the superclass Test to
be invoked. It returns the result of the following statement:

return x + "42";
Here, the x refers to the field x in the Test class, which has the character value '='.
The statement returns the string "=42".
The print statement concatenates the following expression to print ">=42>"—that
is, (¢):

>' o "=42" + >
(d)
The String class is final, and therefore, cannot be extended. An anonymous inner

class tries to extend the String class, but it will be flagged as an error by the com-
piler.

10 OBJECT LIFETIME 1701

10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Object Lifetime

(d)

An object is only eligible for garbage collection if all remaining references to the
object are from other objects that are also eligible for garbage collection. Therefore,
if object obj2 is eligible for garbage collection and object obj1 contains a reference
to it, then object obj1 must also be eligible for garbage collection. Java does not
have a keyword delete. An object will not necessarily be garbage collected imme-
diately after it becomes unreachable. However, the object will be eligible for gar-
bage collection. Circular references do not prevent objects from being garbage
collected, only reachable references do. An object is not eligible for garbage collec-
tion as long as the object can be accessed by any live thread.

(b)

Before (1), the String object initially referenced by argl is denoted by both msg and
argl. After (1), the String object is only denoted by msg. At (2), the reference msg is
assigned a new reference value. This reference value denotes a new String object
created by concatenating the contents of several other String objects. After (2),
there are no references to the String object initially referenced by argl. The String
object is now eligible for garbage collection.

(a)

The only object created is the array, and it is reachable when control reaches (1).

(a)

All the objects created in the loop are reachable via p, when control reaches (1).

(a)

It may seem that since the method removeA11() sets the songs array reference to
nul1, there would be three objects (i.e., the array itself and its two Song objects) eli-
gible for garbage collection when control reaches (1). However, prior to this
method invocation, this array reference is also assigned to a local array variable
songs declared in the main() method. As a result, even though the songs array field
in the ATbum object no longer references the Song array, the local array variable songs
still references this array object, which is thus reachable.

(c), (e), and (f)

The static initializer blocks (a) and (b) are not legal, since the fields alive and STEP
are non-static and final, respectively. (d) is not a syntactically legal static initial-
izer block. The static block in (e) will have no effect, as its body is an empty block.
The static block in (f) will change the value of the static field count from 5 to 1.

(c)

The program will compile and print 50, 70, 0, 20, 0 at runtime. All fields are
given default values unless they are explicitly initialized. Field i is assigned the
value 50 in the static initializer block that is executed when the class is initialized.
This assignment will override the explicit initialization of field i in its declaration
statement. When the main() method is executed, the static field i is 50 and the

1702

10.8

10.9

10.10

10.11

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

static field n is 0. When an instance of the class is created using the new operator,
the value of the static field n (i.e., 0) is passed to the constructor. Before the body
of the constructor is executed, the instance initializer block is executed, which
assigns the values 70 and 20 to the fields j and n, respectively. When the body of
the constructor is executed, the fields i, j, k, and n, and the parameter m, have the
values 50, 70, 0, 20, and 0, respectively.

iz

This class has a blank final boolean instance variable active. This variable must be
initialized when an instance is constructed, or else the code will not compile. This
also applies to blank final static variables. The keyword static is used to signify
that a block is a static initializer block. No keyword is used to signify that a block
is an instance initializer block. (a) and (b) are not instance initializer blocks, and (c),
(d), and (e) fail to initialize the blank final variable active.

(c)

The program will compile and print 2, 3, and 1 at runtime. When the object is cre-
ated and initialized, the instance initializer block is executed first as it is declared
first, printing 2. Then the instance initializer expression is executed, printing 3.
Finally, the constructor body is executed, printing 1. The forward reference in the
instance initializer block is legal, as the use of the field m is on the left-hand side of
the assignment.

(c)

This question tests understanding of execution order of initializers and construc-
tors when an object is created. First the static initializers are executed, when classes
Music and Song are loaded into memory. Therefore, the string "-C--F-" is printed
first. The static initializers are invoked only once, so neither "-C-" nor "-F-" is
printed again. This excludes (a) and (b).

When the first new Song() object is created, it first triggers initialization starting
from its superclass instance initializer and constructor, which prints "-D--E-", after
which the instance initializer and constructor in the Song class are executed, print-
ing "-G--A-". This process is repeated for the second new song, resulting in "-D--
E--G--A-" being printed. The final printout is "-C--F--D--E--G--A--D--E--G--A-".
(c) and (e)

Line (1) will cause illegal redefinition of the field width. Line (2) uses an illegal for-
ward reference to the fields width and height. The assignment in line (3) is legal.
Line (4) is an assignment statement, and therefore illegal in this context. Line (5)
declares a local variable inside an initializer block with the same name as the
instance variable width, which is allowed. The simple name in this block will refer

to the local variable. To access the instance variable width, the this reference must
be used in this block.

11 GENERICS 1703

11 Generics

11.1 (b)

The type of intList is List of Integer and the type of numList is List of Number. The
compiler issues an error because List<Integers> is not a subtype of List<Numbers.

11.2 (c)
With a reference of type List<? super Integer>, a set/put/write/add operation can
only add an Integer or a subtype of Integer to the list. Calls to the add () method in
the code are not a problem, as an Integer is added to the list.
With a reference of type List<? super Integer>, a get/read operation can only get
an Object from the list. This object is not assignable to a reference of type Number. (3)
will not compile.

11.3 (b)
The compiler issues an unchecked conversion warning at (1), as we are assigning
a raw list to a generic list.

114 (b), (f), and (g)
We cannot create an array of a type parameter, as at (2). We cannot refer to the type
parameters of a generic class in a static context—for example, in static initializer
blocks, static field declarations, and as types of local variables in static methods, as
at (6) and (7).

11.5 (b), (c), (e), and (f)

In (b), (c), (e), and (f), the parameterized type in the object creation expression is a
subtype of the type of the reference. This is not the case in (a): Just because Hash-
Map<Integer, String> is a subtype of Map<Integer, String>, it does not follow that
HashMap<Integer, HashMap<Integer, String>> is a subtype of Map<Integer, Map<Inte-
ger, String>>—there is no subtype covariance relationship between concrete
parameterized types. In (d) and (g), wild cards cannot be used to instantiate the
class.

11.6 (b)
ArrayList<Fruit> is not a subtype of List<? extends Apple> at (1), and Array-
List<Apple> is not a subtype of List<? super Fruit> at (4). Any generic list can be
assigned to a raw list reference. A raw list and an unbounded wildcard list are
assignment compatible.

11.7 (d)

The compiler issues unchecked warnings for calls to the add () method. The TreeSet
class orders elements according to their natural ordering. A ClassCastException is
thrown at runtime when the statement set.add(2) is executed, as an Integer is not
comparable to a String.

11.8 (a) and (b)
The type of reference g is of raw type Garage. We can put any object in such a Garage,
but only get Objects out. The type of value returned by the get() method at (6)

1704

11.9

11.10

11.11

11.12

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

through (8) is Object, and therefore, is not assignment compatible with VehicTe,
Car, or Sedan.

(d), (e), and (f)

In (a), the arguments in the call are (List<Number>, List<Integer>). No type
inferred from the arguments satisfies the formal parameters (List<? extends T>,
List<? super T>).

In (b), the arguments in the call are (List<Number>, List<Integer>). The actual type
parameter is Number. The arguments do not satisfy the formal parameters (List<?
extends Number>, List<? super Number>). List<Numbers> is a subtype of List<? extends
Numbers>, but List<Integer> is not a subtype of List<? super Number>.

In (c), the arguments in the call are (List<Number>, List<Integer>).The actual type
parameter is Integer. The arguments do not satisfy the formal parameters (List<?
extends Integer>, List<? super Integer>).List<Number> is not a subtype of List<?
extends Integers>, although List<Integer> is a subtype of List<? super Integer>.

In (d), the arguments in the call are (List<Integer>, List<Number>). The inferred
type is Integer. The arguments satisfy the formal parameters (List<? extends Inte-
ger>, List<? super Integer>).

In (e), the arguments in the call are (List<Integers>, List<Number>). The actual type

parameter is Number. The arguments satisfy the formal parameters (List<? extends
Number>, List<? super Number>).

In (f), the arguments in the call are (List<Integer>, List<Number>). The actual type
parameter is Integer. The arguments satisfy the formal parameters (List<? extends
Integer>, List<? super Integer>).

()

(a) invokes the zero-argument constructor at (1).

(b) invokes the constructor at (2) with T as String and V as String.
(c) invokes the constructor at (2) with T as String and V as Integer.
(d) invokes the constructor at (3) with T as Integer and V as String.
(e) invokes the constructor at (3) with T as String and V as Integer.

(f) cannot infer type arguments for Box<>. From the constructor call signature
(String, Integer) one would assume that T was String and V was Integer. The
parameterized type Box<Integer> of the reference on the left-hand side implies T is
Integer, which contradicts that T is String on the right-hand side.

(b)

It is the fully qualified name of the class after erasure that is printed at runtime.
Note that it is the type of the object, not the reference, that is printed. The erasure
of all the lists in the program is ArrayList.

(e)

(a) contains incompatible types for assignment in the main() method. The method
will return a Collection whose element type is some unknown subtype of CharSe-
quence (Collection<? extends CharSequence>). As it is not known which subtype,
assignment to Collection<String> cannot be allowed.

11 GENERICS 1705

(b) contains an incompatible return value in the delete4LetterWords () method. The
declared return type is List<E> but the return statement returns a Collection<E>. It
cannot convert from Collection<E> to List<E>.

In (c), the reference words denotes a Collection whose element type is some
unknown subtype of CharSequence (Collection<? extends CharSequence>). In the
for(:) loop, the loop variable word is of type E. The unknown element type of words
cannot be converted to E.

(d) contains an incompatible return value in the delete4LetterWords() method: It
cannot convert from Collection<E> to List<E>, as explained in (b). In the for(:)
loop, the unknown element type of words cannot be converted to an element of type
E, as explained in (c).

(e) is OK.

In (f), the keyword super cannot be used in a constraint. It can only be used with a
wildcard (?).

11.13 (b) and (f)

After erasure, the method at (1) has the signature overloadMe(List, List). Since all
methods are declared void, they must differ in their parameter list after erasure in
order to be overloaded with the method at (1). All methods have different param-
eter lists from that of the method at (1), except for the declarations (b) and (f). In
other words, all methods have signatures that are not override equivalent to the
signature of the method at (1), except for (b) and (f).

11.14 (b)

Passing or assigning a raw list to either a list of Integers or to a list of type param-
eter T is not type-safe. Passing or assigning a raw List to a List<?> is always per-
missible.

11.15 (c), (), (i), and (k)

The type parameter N in SubCl does not parameterize the supertype SupC. The era-
sure of the signature at (3) is the same as the erasure of the signature at (1) (i.e., it
is a name clash). Therefore, of the three alternatives (a), (b), and (c), only (c) is cor-
rect.

The type parameter N in SubCl cannot be guaranteed to be a subtype of the type
parameter T in SupC—that is, incompatible return types for the get () methods at (4)
and (2), which are not overridden. Also, methods cannot be overloaded if only
return types are different. Therefore, of the three alternatives (d), (e), and (f), only
(f) is correct.

The type parameter N in SubC2 is a subtype of the type parameter M, which param-
eterizes the supertype SupC. The erasure of the signature at (5) is still the same as
the erasure of the signature at (1) (i.e., it is a name clash). Therefore, of the three
alternatives (g), (h), and (i), only (i) is correct.

The type parameter N in SubCl is a subtype of the type parameter T (through M) in
SupC—that is, covariant return types for the get () methods at (6) and (2), which are
overridden. Therefore, of the three alternatives (j), (k), and (1), only (k) is correct.

1706

11.16

11.17

11.18

11.19

11.20

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(a), (c), and (e)

In (a), because of the way an enum type E is implemented as a subtype of the
java.lang.Enum<E> class in Java, we cannot define a generic enum type.

In (c), generic exceptions or error types are not allowed because the exception han-
dling mechanism is a runtime mechanism and the JVM is oblivious to generics.

In (e), anonymous classes do not have a name, but a class name is needed for
declaring a generic class and specifying its formal type parameters. A parameterized
anonymous class can always to declared.

(d)

Casts are permitted, as at (2) through (6), but can result in an unchecked warning.
The assignment at (5) is from a raw type (List) to a parameterized type (List<Inte-
ger>), resulting in an unchecked assignment conversion warning. Note that at (5)
the cast does not pose any problem. It is the assignment from generic code to leg-
acy code that can be a potential problem, and flagged as an unchecked warning.

At (6), the cast is against the erasure of List<Integer>—that is, List. The compiler
cannot guarantee that obj is a List<Integer> at runtime, and therefore flags the cast
with an unchecked warning.

Only reifiable types in casts do not result in an unchecked cast warning.

(e)
Instance tests in the scuddle() method use the reified type List<?>. All assign-
ments in the main() method are type-safe.

(c)

The erasure of E[] in the method copy () is Object[]. The array type Object[] is actu-
ally cast to Object[] at runtime—that is, an identity cast. The method copy()
returns an array of Object. In the main() method, the assignment of this array to an
array of Strings results in a ClassCastException.

(e)

The method header at (1) is valid. The type of the variable arity parameter can be
generic. The type of the formal parameter aols is an array of Lists of T. However,
the compiler issues a potential heap pollution warning because of variable arity
parameter aols.

The main() method at (2) can be declared as String..., as it is equivalent to
String[], but no potential heap pollution warning is issued, as it is a reifiable type.
The statement at (3) creates an array of Lists of Strings. However, the compiler
issues an unchecked conversion warning, since a raw type (List[]) is being
assigned to a parameterized type (List<String>[]).

The formal type parameter T is inferred to be String in the method call at (4).

The method doIt() prints each list in its variable arity parameter aols.

12 COLLECTIONS, PART I: ARRAYLIST<E> 1707

12

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Collections, Part I: ArrayList<E>

(e)

The for(; ;) loop correctly increments the loop variable so that all the elements in
the list are traversed. Removing elements using the for(; ;) loop does not throw a
ConcurrentModificationException at runtime.

(b) and (c)
In the method doIt1(), one of the common elements ("Ada") between the two lists
is reversed. The value nul11 is added to one of the lists but not the other.

In the method doIt2(), the two lists have common elements. Swapping the ele-
ments in one does not change their position in the other.

(c)
The element at index 2 has the value nu11. Calling the equals() method on this ele-
ment throws a Nul1PointerException.

)

Deleting elements when iterating over a list requires care, as the size changes and
any elements to the right of the deleted element are shifted left. Incrementing the
loop variable after deleting an element will miss the next element (i.e., the last
occurrence of "Bob"). Removing elements using the for(;;) loop does not throw a
ConcurrentModificationException at runtime.

'

The while loop will execute as long as the remove() method returns true—that is,
as long as there is an element with the value "Bob" in the list. The while loop body
is the empty statement. The remove () method does not throw an exception if an ele-
ment value is nul1, or if it is passed a nul1 value.

(b)

An ArraylList object is populated with the content from the String array. Just like
with an array, an array list has a 0-based index. The item at index 1 in this array list
is replaced with the string "X", making this array list content [A,X,B,A]. Then a new
item is added at the same index position, causing all other items in the list to be
shifted by one position, making this array list content [A,X,X,B,A]. Lastly, an item
at index 2 is removed, giving the result [A,X,B,A].

(a)

The method Arrays.asList() creates a fixed-size list, which does not allow items to
be added or removed, but its content can be changed, which is what the set() oper-
ations do, replacing items at index 1 and 2 with "X".

(c)
The two arrays and the list in the main() method contain references to the same

Song objects. These are not independent copies, so modifications on a shared Song
object will be visible no matter how this object is accessed.

1708

12.9

12.10

12.11

13

13.1

13.2

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(b)

A list that is created using the List.of() method shares the elements with the orig-
inal array. However, changes applied to the original array are not reflected in the
list.

(a)

The method toArray () returns an array with all the elements in the list. The type of
the array is given by the array passed as a parameter. If the length of the argument
array is equal to the size of the list, the argument array is used. The argument array
is also used if its length is greater than the size of the list, but after copying the ele-
ments to the array, the remaining elements in the array are filled with nu11 values.
Otherwise, a new array of appropriate size is created. In the sample code, the
length of the array is equal to the size of the list. Therefore, the argument array is
used. Afterwards, the lowercase version of the element at index 0 in the original
list is assigned to the element at index 1 in the array.

(b)

An empty ArrayList object is created to store Character objects, using a constructor
with a capacity of 3. Five char values from 'a' to 'e' are boxed as Character objects
and added to this list. Remember that a list auto-expands its capacity as required.

Functional-Style Programming

(e)

A functional interface can be implemented by lambda expressions and classes. A
functional interface declaration can only have one abstract method declaration. In
the body of a lambda expression, all members in the enclosing class can be
accessed. In the body of a lambda expression, only final or effectively final local
variables in the enclosing scope can be accessed.

(e), (f), (8), and (i)

The assignments at (5), (6), (7), and (9) will not compile. We must check whether
the function type of the target type and the type of the lambda expression are com-
patible. The function type of the target type pl in the assignment statements from
(1) to (5) is String -> void (i.e., a void return). The function type of the target type
p2 in the assignment statements from (6) to (10) is String -> String (i.e., a non-void
return). Below, the functional type of the target type is shown in a comment with
the prefix LHS (left-hand side), and the type of the lambda expression for each
assignment from (1) to (10) is shown in a comment with the prefix RHS (right-hand
side).

Funkyl p1; // LHS: String -> void

pl = s -> System.out.printin(s); // (1) RHS: String -> void

pl = s -> s.length(Q); // (2) RHS: String -> int

pl = s -> s.toUpperCase(); // (3) RHS: String -> String

pl = s -> { s.toUpperCase(); }; // (4) RHS: String -> void
// pl =s -> { return s.toUpperCase(); }; // (5) RHS: String -> String

13 FUNCTIONAL-STYLE PROGRAMMING 1709

13.3

13.4

Funky?2 p2; // LHS: String -> String
// p2 =s -> System.out.println(s); // (6) RHS: String -> void
// p2 =s -> s.lengthQ); // (7) RHS: String -> int

p2 = s -> s.toUpperCase(); // (8) RHS: String -> String
// p2 =s -> { s.toUpperCase(); }; // (9) RHS: String -> void

p2 = s -> { return s.toUpperCase(); }; // (L0)RHS: String -> String

Remember that the non-void return of a lambda expression with an expression state-
ment as the body can be interpreted as a void return, if the function type of the tar-
get type returns void. This is the case at (2) and (3). The return value is ignored. The
type String -> String of the lambda expression at (5) is not compatible with the
function type String -> void of the target type pl.

The type of the lambda expression at (6), (7), and (9) is not compatible with the
function type String -> String of the target type p2.

(d)

The three interfaces are functional interfaces. AgreementB explicitly provides an
abstract method declaration of the public method equals() from the Object class,
but such declarations are excluded from the definition of a functional interface.
Thus AgreementB effectively has only one abstract method. A functional interface
can be implemented by a concrete class, such as Beta. The function type of the tar-
get type in the assignments (1) to (3) is void -> void. The type of the lambda expres-
sion at (1) to (3) is also void -> void. The assignments (1) to (3) are legal.

The assignment at (4) is legal. Subtype references are assigned to supertype refer-
ences. References o, a, and c refer to the lambda expression at (3).

The assignment at (5) is legal. The reference b has the type AgreementB and class Beta
implements this interface.

The code at (6), (7), and (8) invokes the method doIt(). The code at (6) evaluates
the lambda expression at (3), printing Jingle|. The code at (7) invokes the doIt()
method on an object of class Beta, printing Jazz|. The code at (8) also evaluates the
lambda expression at (3), printing Jingle].

At (9), the reference o is cast down to AgreementA. The reference o actually refers to
the lambda expression at (3), which has target type AgreementC. This interface is a
subtype of AgreementA. A subtype is cast to a supertype, which is allowed, so no
ClassCastException is thrown at runtime. Invoking the doIt() method again results
in evaluation of the lambda expression at (3), printing Jingle|.

Apart from the declarations of the lambda expressions, the rest of the code is plain-
vanilla Java. Note also that the following assignment that defines a lambda expres-
sion would not be valid, since the Object class is not a functional interface and
therefore cannot provide a target type for the lambda expression:

Object obj = () -> System.out.printin("Jingle"); // Compile-time error!

(c)

The method removeIf() accepts as an argument a lambda expression that imple-
ments a Predicate<E> interface. This method removes all strings of length 3 from
the list. The for (:) loop calculates the sum of the lengths of the remaining strings
in the list, producing a result of 9.

1710

13.5

13.6

13.7

13.8

13.9

13.10

13.11

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(c)

The method removeIf() accepts a lambda expression that first converts a string to
lowercase and then tests whether the resulting string starts with the character 'a’.
Note that the predicate only performs the test, and it does not actually modify the
strings in the list. Only the strings "ANNA" and "ALICE" pass the test and are
removed.

(i)

The lambda expression uses identifier s as a parameter name, which is illegal
because a variable called s is already defined in the enclosing context of the lambda
expression.

(c)

There are two predicates defined in this code. The first predicate determines
whether a string contains the letter 0, and the second one determines whether a
string ends with the letter P The composed predicate
filterl.and(filter2).negate() determines whether a string does not contain an 0
or it does not end with a P. Only the strings "PLOT" and "LEAP" pass this test and are
removed from the list by the removeIf() method, leaving only the strings "FLOP"
and "LOOP" in the list.

(d)

The compose () method is inherited by the UnaryOperator<T> from its superinterface
Function<T, T>. This method returns a Function<T, T>. As an instance of a super-
type (Function<T, T>) cannot be assigned to a subtype (UnaryOperator<T>), the
assignment to 3 results in a compile-time error.

(b)

All String values in the list are replaced with their lowercase equivalents using the
replaceA11() method which accepts alambda expression that implements a Unary-
Operator<String>. The two consumers are applied to the values in this List. Con-
sumer c1 is changing the first letter of every string in the list to uppercase, but it
does not replace actual String objects stored within this list. Next, consumer c2
prints the content of this list, which has been produced by the replaceA11()
method.

(b)

Regarding method references, the method isEven() is static and therefore should
be referred to using the class name Test, while the method printvalue() is an
instance method, and therefore should be referred to using a reference of the class
Test.

(a)

The target reference for the bounded instance method reference is set explicitly.
The unbounded instance method reference interprets the first argument as the tar-
get reference.

14 OBJECT COMPARISON 1711

13.12

13.13

14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

(d)

Notice that the BiFunction in this example is using raw type. Therefore, the x and y
parameters are of the Object type. This means that a division operator cannot be
applied in this case.

(a)

Functions f1 and f2 are combined to concatenate the prefix and the postfix around
the value supplied to the apply() method argument. Notice that conversion to
String works for any object in Java. Therefore, Function objects can use raw types.

Object Comparison

(b) and (d)

It is recommended that (a) is fulfilled, but it is not a requirement. (c) is also not
required, but such objects will lead to collisions in the hash table, as they will map
to the same bucket.

(a), (b), (d), and (h)

(c) is eliminated, since the hashCode() method cannot claim inequality if the
equals() method claims equality. (e) and (f) are eliminated, since the equals()
method must be reflexive, and (g) is eliminated, since the hashCode) method must
consistently return the same hash code during execution.

(b), (d), and (e)
(a) and (c) fail to satisfy the properties of an equivalence relation. (a) is not transi-
tive, and (c) is not symmetric.

(a) and (e)

(b) is not correct, since it will throw an ArithmeticException when called on a newly
created Measurement object. (c) and (d) are not correct, since they may return
unequal hash codes for two objects that are equal according to the equals()
method.

(c)

The generic static method cmp() returns a comparator (implemented as a lambda
expression) that reverses the natural ordering of a Comparable type. The natural
ordering of the class Person is ordering by name first and then by age, using the
reverse comparators strCmp and intCmp. pl is less than p2 because of name, and p1 is
greater than p3, because of age, as their names are equal.

(d)

All methods implement reverse natural ordering, except the method at (4). The
method reference Comparable::compareTo is equivalent to the lambda expression
(el, e2) -> el.compareTo(e2)—that is, natural ordering.

(b)
A lambda expression that implements the Comparator<String, String> is used to
sort the array in ascending order based on the text representation of Integer

1712

14.8

14.9

14.10

15

15.1

15.2

15.3

APPENDIX D: ANNOTATED ANSWERS TO REVIEW QUESTIONS

objects. Basically, each array element is converted to a String before it is compared.
The ordering is that of String objects, where "-23"is less than "-41" lexicographi-
cally.

(a)

The lambda expression that implements the Comparator<ATbum> interface defines a
total ordering of ATbums based on the difference between the lengths of the album
titles, resulting in the list being sorted in ascending order by title length. The
resulting list is then printed using the lambda expression that implements the Con-
sumer<Album> interface.

(b)

The equals() method of the ATbuml class checks whether the object is not nu11 and
of the same type as the current object before comparing album titles. This is a strict
check that verifies whether the object with which the current object is compared is
of exactly the same type, using the following condition: (getClass() != obj.get-
Class()). Alternatively, a less strict check that allows type substitution is also pos-
sible: (obj instanceof Albuml). The difference between these two approaches is
that the instanceof operator can return true when comparing this object to another
object that is an instance of the subtype. Of course, this would not be the case if spe-
cific class types are compared.

Note that the logic in the main() method compares an Albuml to an LP, which is actu-
ally a subclass of Albuml. This means that even though both of these objects have
the same title, they would not be considered equal because the logic of the equals ()
method implements a strict type comparison.

(b) and (d)

The Comparator<A> interface defines the compare() method that is designed to com-
pare two argument objects of class A to establish their ordering. Each Comparator<A>
implementation can define a different total ordering for the objects.

Collections: Part Il

(a)
The expression in the for(:) loop header (in this case the call to the makeCollec-
tion() method) is only evaluated once.

(c) and (d)

The for(:) loop does not allow the list to be modified structurally. In (a) and (b),
the code will throw a java.util.ConcurrentModificationException. Note that the
iterator in (d) is less restrictive than the for(:) loop, allowing elements to be
removed in a controlled way.

(d)

The iterator implemented will iterate over the elements of the list in the reverse
order, and so will the for(:) loop. The Iterable<E> and the Iterator<E> interfaces
are implemented correctly. Note that the anonymous class that implements the

15 COLLECTIONS: PART II 1713

15.4

15.5

15.6

15.7

15.8

15.9

iterator is parameterized by the formal type parameter T of the generic class
AnotherListIterator<T>.

(b) and (d)

Some operations on a collection may throw an UnsupportedOperationException.
This exception type is unchecked, and the user code is not required to explicitly
handle unchecked exceptions. A List<E> allows duplicate elements. An Array-
List<E> is implemented using a resizable array. The capacity of the array will be
expanded automatically when needed. The Set<E> allows at most one null ele-
ment.

(d)

The program will compile without error, and will print all primes below 25 at run-
time. All collection implementations used in the program implement the Collec-
tion<E> interface. The implementation instances are interchangeable when
denoted by Collection references. None of the operations performed on the imple-
mentations will throw an UnsupportedOperationException. The program finds the
primes below 25 by removing all values divisible by 2, 3, and 5 from the set of val-
ues from 2 through 25.

(b)

The remove() method removes the last element returned by either the next() or
previous() method. The four next() calls return A, B, C, and D. D is subsequently
removed. The two previous() calls return C and B. B is subsequently removed.

(c), (d), (e), and (f)

Sets cannot have duplicates. HashSet<E> does not guarantee the order of the ele-
ments in (a) and (b), so there is no guarantee that the program will print [1, 9].
Because LinkedHashSet<E> maintains elements in insertion