
519

 Appendix C

Annotated Answers
to Review Questions

1 Basics of Java Programming

1.1 (d)
A method is an operation defining the behavior for a particular abstraction. Java
implements abstractions using classes that have properties and behavior. Behavior
is defined by the operations of the abstraction.

1.2 (b)
An object is an instance of a class. Objects are created from classes that implement
abstractions. The objects that are created are concrete realizations of those abstrac-
tions. An object is neither a reference nor a variable.

1.3 (b)
(2) is the first line of a constructor declaration. A constructor in Java is declared like
a method, but does not specify a return value. (1) is the header of a class declara-
tion, (3) is the first statement in the constructor body, and (4), (5) and (6) are
instance method declarations.

1.4 (b) and (f)
Two objects and three references are created by the code. Objects are normally cre-
ated by using the new operator. The declaration of a reference creates a variable
regardless of whether a reference value is assigned to it.

1.5 (d)
An instance member is a field or an instance method. These members belong to an
instance of the class rather than to the class as a whole. Members that are not
explicitly declared as static in a class declaration are instance members.

1.6 (c)
An object communicates with another object by calling an instance method of the
other object.

PGJC4_JSE8_OCA.book Page 519 Monday, June 20, 2016 2:31 PM

520 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

1.7 (d) and (f)
Given the declaration class B extends A {...}, we can conclude that class B extends

class A, class A is the superclass of class B, class B is a subclass of class A, and class B
inherits from class A, which means that objects of class B will inherit the field value1
from class A.

1.8 (b), (d), and (g)
A Train object can share both the TrainDriver and its Carriage objects with other

Train objects, when it is not using them. In other words, they can outlive the Train
object. This is an example of aggregation. However, a Train object owns the array

object used for handling its carriages. The lifetime of an array object is nested in the

lifetime of its Train object. This is an example of composition.

1.9 (d)
The compiler supplied with the JDK is named javac. The names of the source files

to be compiled are listed on the command line after the command javac.

1.10 (a)
Java programs are executed by the Java Virtual Machine (JVM). In the JDK, the

command java is used to start the execution by the JVM. The java command

requires the name of a class that has a valid main() method. The JVM starts the pro-

gram execution by calling the main() method of the given class. The exact name of

the class should be specified, rather than the name of the class file; that is, the

.class extension in the class file name should not be specified.

1.11 (e)
(a): The JVM must be compatible with the Java Platform on which the program was

developed.

(b): The JIT feature of the JVM translates bytecode to machine code.

(c): Other languages, such as Scala, also compile to bytecode and can be executed

by a JVM.

(d): A Java program can only create objects; destroying objects occurs at the discre-

tion of the automatic garbage collector.

2 Language Fundamentals

2.1 (c)
52pickup is not a legal identifier. The first character of an identifier cannot be a digit.

An underscore is treated as a letter in identifier names.

2.2 (b), (c), (d), and (f)
In (b), the underscore is not between digits. In (c), digit 9 is not valid in an octal

literal. In (d), the underscore is not between digits. In (f), there is no such escape

sequence.

PGJC4_JSE8_OCA.book Page 520 Monday, June 20, 2016 2:31 PM

2: LANGUAGE FUNDAMENTALS 521

2.3 (e)
In Java, the identifiers delete, thrown, exit, unsigned, and next are not keywords.
Java has a goto keyword, but it is reserved and not currently used.

2.4 (e)
Everything from the start sequence (/*) of a multiple-line comment to the first
occurrence of the end sequence (*/) of a multiple-line comment is ignored by the
compiler. Everything from the start sequence (//) of a single-line comment to the
end of the line is ignored by the compiler. In (e), the multiple-line comment ends
with the first occurrence of the end sequence (*/), leaving the second occurrence of
the end sequence (*/) unmatched.

2.5 (a) and (d)
String is a class, and "hello" and "t" denote String objects. Java has the following
primitive data types: boolean, byte, short, char, int, long, float, and double.

2.6 (a), (c), and (e)
(a) is a boolean data type, while (c) and (e) are floating-point data types.

2.7 (c)
The bit representation of int is 32 bits wide and can hold values in the range –231

through 231 – 1.
2.8 (a), (c), and (d)

The \uxxxx notation can be used anywhere in the source to represent Unicode
characters.

2.9 (c)
Local variable i is declared but not initialized. The first line of code declares the
local variables i and j. The second line of code initializes the local variable j. Local
variable i remains uninitialized.

2.10 (c)
The local variable of type float will remain uninitialized. Fields and static vari-
ables are initialized with a default value. An instance variable of type int[] is a ref-
erence variable that will be initialized with the null value. Local variables remain
uninitialized unless explicitly initialized. The type of the variable does not affect
whether a variable is initialized.

2.11 (e)
The program will compile. The compiler can figure out that the local variable price
will always be initialized, since the value of the condition in the if statement is
true. The two instance variables and the two static variables are all initialized to the
respective default value of their type.

PGJC4_JSE8_OCA.book Page 521 Monday, June 20, 2016 2:31 PM

522 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

3 Declarations

3.1 (b)
Only (b) is a valid method declaration. Methods must specify a return type or must
be declared as void. This makes (d) and (e) invalid. Methods must specify a list of
zero or more comma-separated parameters enclosed by parentheses, (). The key-
word void cannot be used to specify an empty parameter list. This makes (a) and
(c) invalid.

3.2 (a), (b), and (e)
Non-static methods have an implicit this object reference. The this reference can-
not be changed, as in (c). The this reference can be used in a non-static context to
refer to both instance and static members. However, it cannot be used to refer to
local variables, as in (d).

3.3 (a) and (e)
The first and third pairs of methods will compile. The second pair of methods will
not compile, since their method signatures do not differ. The compiler has no way
of differentiating between the two methods. Note that the return type and the
names of the parameters are not a part of the method signature. Both methods in
the first pair are named fly and have different numbers of parameters, thus over-
loading this method name. The methods in the last pair do not overload the
method name glide, since only one method has that name. The method named Glide
is distinct from the method named glide, as identifiers are case sensitive in Java.

3.4 (a)
A constructor cannot specify any return type, not even void. A constructor cannot
be final, static, or abstract.

3.5 (b) and (e)
A constructor can be declared as private, but this means that this constructor can
be used only within the class. Constructors need not initialize all the fields when a
class is instantiated. A field will be assigned a default value if not explicitly initial-
ized. A constructor is non-static and, as such, it can directly access both the static
and non-static members of the class.

3.6 (c)
A compile-time error will occur at (3), since the class does not have a constructor
accepting a single argument of type int. The declaration at (1) declares a method,
not a constructor, since it is declared as void. The method happens to have the same
name as the class, but that is irrelevant. The class has a default constructor, since
the class contains no constructor declarations. This constructor will be invoked to
create a MyClass object at (2).

3.7 (d)
In Java, arrays are objects. Each array object has a public final field named length
that stores the size of the array.

PGJC4_JSE8_OCA.book Page 522 Monday, June 20, 2016 2:31 PM

3: DECLARATIONS 523

3.8 (a)
Java allows arrays of length zero. Such an array is passed as an argument to the
main() method when a Java program is run without any program arguments.

3.9 (c)
The [] notation can be placed both after the type name and after the variable name
in an array declaration. Multidimensional arrays are created by constructing
arrays that can contain references to other arrays. The expression new int[4][] will
create an array of length 4, which can contain references to arrays of int values. The
expression new int[4][4] will also create a two-dimensional array, but will in addi-
tion create four more one-dimensional arrays, each of length 4 and of the type
int[]. References to each of these arrays are stored in the two-dimensional array.
The expression int[][4] will not work, because the arrays for the dimensions must
be created from left to right.

3.10 (b) and (e)
The size of the array cannot be specified, as in (b) and (e). The size of the array is
given implicitly by the initialization code. The size of the array is never specified
in the declaration of an array reference. The size of an array is always associated
with the array instance (on the right-hand side), not the array reference (on the left-
hand side).

3.11 (e)
The array declaration is valid, and will declare and initialize an array of length 20
containing int values. All the values of the array are initialized to their default
value of 0. The for(;;) loop will print all the values in the array; that is, it will print
0 twenty times.

3.12 (d)
The program will print 0 false 0 null at runtime. All the instance variables, and
the array element, will be initialized to their default values. When concatenated
with a string, the values are converted to their string representation. Notice that the
null pointer is converted to the string "null", rather than throwing a NullPointer-
Exception.

3.13 (b)
Evaluation of the actual parameter i++ yields 0, and increments i to 1 in the pro-
cess. The value 0 is copied into the formal parameter i of the method addTwo() dur-
ing method invocation. However, the formal parameter is local to the method, and
changing its value does not affect the value in the actual parameter. The value of
the variable i in the main() method remains 1.

3.14 (d)
The variables a and b are local variables that contain primitive values. When these
variables are passed as arguments to another method, the method receives copies
of the primitive values in the variables. The actual variables are unaffected by
operations performed on the copies of the primitive values within the called
method. The variable bArr contains a reference value that denotes an array object

PGJC4_JSE8_OCA.book Page 523 Monday, June 20, 2016 2:31 PM

524 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

containing primitive values. When the variable is passed as a parameter to another
method, the method receives a copy of the reference value. Using this reference
value, the method can manipulate the object that the reference value denotes. This
allows the elements in the array object referenced by bArr to be accessed and mod-
ified in the method inc2().

3.15 (a) and (f)
A value can be assigned to a final variable only once. A final formal parameter is
assigned the value of the actual parameter at method invocation. Within the
method body, it is illegal to reassign or modify the value stored in a final parame-
ter. This causes a++ and c = d to fail. Whether the actual parameter is final does not
constrain the client that invoked the method, since the actual parameter values are
assigned to the formal parameters.

3.16 (a), (d), and (f)
The ellipses (...) must be specified before the parameter name. Only one variable
arity parameter is permitted, and it must be the last parameter in the formal
parameter list.

3.17 (c)
In (a) and (b), the arguments are encapsulated as elements in the implicitly created
array that is passed to the method. In (c), the int array object itself is encapsulated
as an element in the implicitly created array that is passed to the method. (a), (b)
and (c) are fixed arity calls. Note that int[] is not a subtype of Object[]. In (d), (e),
and (f), the argument is a subtype of Object[], and the argument itself is passed
without the need of an implicitly created array; that is, these are fixed arity method
calls. However, in (d) and (e), the compiler issues a warning that both fixed arity
and variable arity method calls are feasible, but chooses fixed arity method calls.

4 Access Control

4.1 (a) and (c)
Bytecode of all reference type declarations in the file is placed in the designated
package, and all reference type declarations in the file can access the imported
types.

4.2 (e)
Both classes are in the same package app, so the first two import statements are
unnecessary. The package java.lang is always imported in all compilation units, so
the next two import statements are unnecessary. The last static import statement is
necessary to access the static variable frame in the Window class by its simple name.

4.3 (b), (c), (d), and (e)
(a): The import statement imports types from the mainpkg package, but Window is not
one of them.
(b): The import statement imports types from the mainpkg.subpkg1 package, and
Window is one of them.

PGJC4_JSE8_OCA.book Page 524 Monday, June 20, 2016 2:31 PM

4: ACCESS CONTROL 525

(c): The import statement imports types from the mainpkg.subpkg2 package, and
Window is one of them.
(d): The first import statement is type-import-on-demand and the second import
statement is single-type-import. Both import the type Window. The second overrides
the first one.
(e): The first import statement is single-type-import and the second import state-
ment is type-import-on-demand. Both import the type Window. The first overrides
the second one.
(f): Both import statements import the type Window, making the import ambiguous.
(g): Both single-type-import statements import the type Window. The second import
statement causes a conflict with the first.

4.4 (c) and (e)
The name of the class must be fully qualified. A parameter list after the method
name is not permitted. (c) illustrates single static import and (e) illustrates static
import on demand.

4.5 (b), (d), and (f)
In (a), the file A.class will be placed in the same directory as the file A.java. There
is no -D option for the javac command, as in (c). The compiler maps the package
structure to the file system, creating the necessary (sub)directories.

4.6 (b) and (d)
In (a) and (c), class A cannot be found. In (e) and (f), class B cannot be found—there
is no package under the current directory /top/wrk/pkg to search for class B. Note
that specifying pkg in the classpath in (d) is superfluous. The parent directory of the
package must be specified, meaning the location of the package.

4.7 (d) and (f)
The parent directory (or location) of the package must be specified. Only (d) and (f)
do that. (d) specifies the current directory first, but there is no file top/sub/A.class
under the current directory. Searching under ../bin (i.e., /proj/bin) finds the file
top/sub/A.class.

4.8 (c) and (d)
A class or interface name can be referred to by using either its fully qualified name
or its simple name. Using the fully qualified name will always work, but to use the
simple name it has to be imported. When net.basemaster.* is imported, all the type
names from the package net.basemaster will be imported and can now be referred
to using simple names. Importing net.* will not import the subpackage basemaster.

4.9 (c)
Any non-final class can be declared as abstract. A class cannot be instantiated if the
class is declared as abstract. The declaration of an abstract method cannot provide
an implementation. The declaration of a non-abstract method must provide an
implementation. If any method in a class is declared as abstract, then the class
must be declared as abstract, so (a) is invalid. The declaration in (b) is not valid,
since it omits the keyword abstract in the method declaration. The declaration in

PGJC4_JSE8_OCA.book Page 525 Monday, June 20, 2016 2:31 PM

526 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

(d) is not valid, since it omits the keyword class. In (e), the return type of the
method is missing.

4.10 (e)
Only a final class cannot be extended, as in (d). (c) and (e) will also not compile.
The keyword native can be used only for methods, not for classes and fields. A
class cannot be declared as both final and abstract.

4.11 (b)
Outside the package, the member j is accessible to any class, whereas the member
k is accessible only to subclasses of MyClass.
The field i has package accessibility, and is accessible to only classes inside the
package. The field j has public accessibility, and is accessible from anywhere. The
field k has protected accessibility, and is accessible from any class inside the pack-
age and from subclasses anywhere. The field l has private accessibility, and is
accessible only within its own class.

4.12 (c)
The default accessibility for members is more restrictive than protected accessibil-
ity, but less restrictive than private accessibility. Members with default accessibility
are accessible only within the class itself and from classes in the same package. Pro-
tected members are, in addition, accessible from subclasses anywhere. Members
with private accessibility are accessible only within the class itself.

4.13 (b)
A private member is accessible only within the class of the member. If no accessi-
bility modifier has been specified for a member, the member has default accessibil-
ity, also known as package accessibility. The keyword default is not an accessibility
modifier. A member with package accessibility is accessible only from classes in
the same package. Subclasses in other packages cannot access a member with
default accessibility.

4.14 (a), (c), (d), (e), and (h)
The lines (1), (3), (4), (5), and (8) will compile. A protected member of a superclass
is always inherited by a subclass. Direct access to the protected field pf is permitted
in subclasses B and C at (1) and (5), respectively.
A subclass in another package can access protected members in the superclass only
via references of its own type or its subtypes. In packageB, the subclass B can access
the protected field pf in the superclass packageA.A via references of type B (i.e.,
parameter obj2) and references of its subclass C (i.e., parameter obj3). However, the
subclass C can access the protected field pf in the superclass packageA.A only via ref-
erences of type C (i.e., parameter obj3). This is the case at (3), (4), and (8).
The class D does not have any inheritance relationship with any of the other classes,
and therefore the protected field pf is not accessible in the class D. This rules out the
lines from (9) to (12).

PGJC4_JSE8_OCA.book Page 526 Monday, June 20, 2016 2:31 PM

4: ACCESS CONTROL 527

4.15 (b) and (e)
If no accessibility modifier (public, protected, or private) is given in the member
declaration of a class, the member is accessible only to classes in the same package.
A subclass does not have access to members with default accessibility declared in
a superclass, unless they are in the same package.
Local variables cannot be declared as static or have an accessibility modifier.

4.16 (c)
Line (3) void k() { i++; } can be reinserted without introducing errors. Reinserting
line (1) will cause the compilation to fail, since MyOtherClass will try to override a
final method. Reinserting line (2) will fail, since MyOtherClass will no longer have
the (no-argument) default constructor. The main() method needs to call the no-
argument constructor. Reinserting line (3) will work without any problems, but
reinserting line (4) will fail, since the method will try to access a private member of
the superclass.

4.17 (b)
The keyword this can be used only in non-static code, as in non-static methods,
constructors, and instance initializer blocks. Only one occurrence of each static
variable of a class is created, when the class is loaded by the JVM. This occurrence
is shared among all the objects of the class (and for that matter, by other clients).
Local variables are accessible only within the block scope, regardless of whether
the block scope is defined within a static context.

4.18 (c)
The declaration in (c) is not legal, as variables cannot be declared as abstract. The
keywords static and final are valid modifiers for both field and method declara-
tions. The modifiers abstract and native are valid for methods, but not together.
They cannot be specified for fields.

4.19 (a) and (c)
Abstract classes can declare both final methods and non-abstract methods. Non-
abstract classes cannot, however, contain abstract methods. Nor can abstract
classes be final. Only methods can be declared native.

4.20 (a)
The keyword transient signifies that the fields should not be stored when objects
are serialized. Constructors cannot be declared as abstract. When an array object
is created, as in (c), the elements in the array object are assigned the default value
corresponding to the type of the elements. Whether the reference variable denoting
the array object is a local variable or a member variable is irrelevant. Abstract
methods from a superclass need not be implemented by a subclass, but the sub-
class must then be declared as abstract. Static methods can also be accessed in a
non-static context—for example, in instance methods, constructors, and instance
initializer blocks.

PGJC4_JSE8_OCA.book Page 527 Monday, June 20, 2016 2:31 PM

528 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

5 Operators and Expressions

5.1 (a)
A value of type char can be assigned to a variable of type int. A widening conver-
sion will convert the value to an int.

5.2 (d)
An assignment statement is an expression statement. The value of the expression
statement is the value of the expression on the right-hand side. Since the assign-
ment operator is right associative, the statement a = b = c = 20 is evaluated as fol-
lows: (a = (b = (c = 20))). This results in the value 20 being assigned to c, then the
same value being assigned to b and finally to a. The program will compile, and
print 20 at runtime.

5.3 (c)
Strings are objects. The variables a, b, and c are references that can denote such
objects. Assigning to a reference only changes the reference value; it does not create
a copy of the source object or change the object denoted by the old reference value
in the target reference. In other words, assignment to references affects only which
object the target reference denotes. The reference value of the "cat" object is first
assigned to a, then to b, and later to c. The program prints the string denoted by c,
"cat". The local final String variable b is initialized only once in the code.

5.4 (a), (d), and (e)
A binary expression with any floating-point operand will be evaluated using
floating-point arithmetic. Expressions such as 2/3, where both operands are inte-
gers, will use integer arithmetic and evaluate to an integer value. In (e), the result
of (0x10 * 1L) is promoted to a floating-point value.

5.5 (b)
The / operator has higher precedence than the + operator. This means that the
expression is evaluated as ((1/2) + (3/2) + 0.1). The associativity of the binary
operators is from left to right, giving (((1/2) + (3/2)) + 0.1). Integer division
results in ((0 + 1) + 0.1), which evaluates to 1.1.

5.6 (e)
0x10 is a hexadecimal literal equivalent to the decimal value 16. 10 is a decimal
literal. 010 is an octal literal equivalent to the decimal value 8. 0b10 is a binary literal
equivalent to the decimal value 2. The println() method will print the sum of these
values, which is 36, in decimal form.

5.7 (b), (c), and (f)
The unary + and - operators with right associativity are used in the valid expres-
sions (b), (c), and (f). Expression (a) tries to use a nonexistent unary - operator with
left associativity, expression (d) tries to use a decrement operator (--) on an expres-
sion that does not resolve to a variable, and expression (e) tries to use a nonexistent
unary * operator. (c) compiles because the unary operators cannot be interpreted
as increment (++) or decrement (--) operators: (+(-(+(-(+(-1)))))).

PGJC4_JSE8_OCA.book Page 528 Monday, June 20, 2016 2:31 PM

5: OPERATORS AND EXPRESSIONS 529

5.8 (b)
The expression evaluates to –6. The whole expression is evaluated as (((-(-1)) -
((3 * 10) / 5)) - 1) according to the precedence and associativity rules.

5.9 (a), (b), (d), and (e)
In (a), the conditions for implicit narrowing conversion are fulfilled: The source is
a constant expression of type int, the destination type is of type short, and the
value of the source (12) is in the range of the destination type. The assignments in
(b), (d), and (e) are valid, since the source type is narrower than the target type and
an implicit widening conversion will be applied. The expression (c) is not valid.
Values of type boolean cannot be converted to other types.

5.10 (a), (c), and (d)
The left associativity of the + operator makes the evaluation of (1 + 2 + "3") pro-
ceed as follows: (1 + 2) + "3" o 3 + "3" o "33". Evaluation of the expression ("1"
+ 2 + 3), however, will proceed as follows: ("1" + 2) + 3 o "12" + 3 o "123". (4 +
1.0f) evaluates as 4.0f + 1.0f o 5.0f and (10/9) performs integer division, result-
ing in the value 1. The operand 'a' in the expression ('a' + 1) will be promoted to
int, and the resulting value will be of type int.

5.11 (d)
The expression ++k + k++ + + k is evaluated as ((++k) + (k++)) + (+k) o ((2) + (2)
+ (3)), resulting in the value 7.

5.12 (d)
The types char and int are both integral. A char value can be assigned to an int vari-
able since the int type is wider than the char type and an implicit widening
conversion will be done. An int type cannot be assigned to a char variable because
the char type is narrower than the int type. The compiler will report an error about
a possible loss of precision in (4).

5.13 (c)
Variables of the type byte can store values in the range –128 to 127. The expression
on the right-hand side of the first assignment is the int literal 128. Had this literal
been in the range of the byte type, an implicit narrowing conversion would have
been applied to convert it to a byte value during assignment. Since 128 is outside
the range of the type byte, the program will not compile.

5.14 (a)
First, the expression ++i is evaluated, resulting in the value 2. Now the variable i
also has the value 2. The target of the assignment is now determined to be the ele-
ment array[2]. Evaluation of the right-hand expression, --i, results in the value 1.
The variable i now has the value 1. The value of the right-hand expression, 1, is
then assigned to the array element array[2], causing the array contents to become
{4, 8, 1}. The program computes and prints the sum of these values, 13.

PGJC4_JSE8_OCA.book Page 529 Monday, June 20, 2016 2:31 PM

530 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

5.15 (a) and (c)
In (a) and (e), both operands are evaluated, with (a) yielding true, but (e) yielding
false. The null literal can be compared, so (null != null) yields false. The expres-
sion (4 <= 4) is true. (!true) is false.

5.16 (c) and (e)
The remainder operator % is not limited to integral values, but can also be applied
to floating-point operands. Short-circuit evaluation occurs only with the condi-
tional operators (&&, ||). The operators *, /, and % have the same level of precedence.
The data type short is a 16-bit signed two’s complement integer, so the range of val-
ues is from -32768 to +32767, inclusive. (+15) is a legal expression using the unary +
operator.

5.17 (a), (c), and (e)
The != and ^ operators, when used on boolean operands, will return true if and
only if one operand is true, and false otherwise. This means that d and e in the pro-
gram will always be assigned the same value, given any combination of truth val-
ues in a and b. The program will, therefore, print true four times.

5.18 (b)
The element referenced by a[i] is determined based on the current value of i,
which is 0—that is, the element a[0]. The expression i = 9 will evaluate to the value
9, which will be assigned to the variable i. The value 9 is also assigned to the array
element a[0]. After the execution of the statement, the variable i will contain the
value 9, and the array a will contain the values 9 and 6. The program will print
9 9 6 at runtime.

5.19 (c) and (d)
Note that the logical and conditional operators have lower precedence than the
relational operators. Unlike the & and | operators, the && and || operators short-
circuit the evaluation of their operands if the result of the operation can be deter-
mined from the value of the first operand. The second operand of the || operator
in the program is never evaluated because of short-circuiting. All the operands of
the other operators are evaluated. Variable i ends up with the value 3, which is the
first digit printed, and j ends up with the value 1, which is the second digit printed.

5.20 (d) and (f)
 &&= and %% are not operators in Java. The operators %, &&, %= , <=, and -> are called
remainder, conditional AND, remainder compound assignment, relational less
than or equal, and arrow operator, respectively.

5.21 (c), (e), and (f)
In (a), the third operand has the type double, which is not assignment compatible
with the type int of the variable result1. Blocks are not legal operands in the con-
ditional operator, as in (b). In (c), the last two operands result in wrapper objects
with type Integer and Double, respectively, which are assignment compatible with
the type Number of the variable number. The evaluation of the conditional expression
results in the reference value of an Integer object, with value 20 being assigned to

PGJC4_JSE8_OCA.book Page 530 Monday, June 20, 2016 2:31 PM

6: CONTROL FLOW 531

the number variable. All three operands of the operator are mandatory, which is not
the case in (d). In (e), the last two operands are of type int, and the evaluation of
the conditional expression results in an int value (21), whose string representation
is printed. In (f), the value of the second operand is boxed into a Boolean. The eval-
uation of the conditional expression results in a string literal ("i not equal to j"),
which is printed. The println() method creates and prints a string representation
of any object whose reference value is passed as parameter.

5.22 (d)
The condition in the outer conditional expression is false. The condition in the
nested conditional expression is true, resulting in the value of m1 (i.e., 20) being
printed.

6 Control Flow

6.1 (d)
The program will display the letter b when run. The second if statement is evalu-
ated since the boolean expression of the first if statement is true. The else clause
belongs to the second if statement. Since the boolean expression of the second if
statement is false, the if block is skipped and the else clause is executed.

6.2 (a), (b), and (e)
The condition of an if statement can be any expression, including method calls, as
long as it evaluates or can be unboxed to a value of type boolean. The expression (a
= b) does not compare the variables a and b, but assigns the value of b to the vari-
able a. The result of the expression is the value being assigned. Since a and b are
either boolean or Boolean variables, the value returned by the expression is also
either boolean or Boolean. This allows the expression to be used as the condition for
an if statement. An if statement must always have an if block, but the else clause
is optional. The expression if (false) ; else ; is legal. In this case, both the if
block and the else block are simply the empty statement.

6.3 (f)
There is nothing wrong with the code. The case and default labels do not have to
be specified in any specific order. The use of the break statement is not mandatory,
and without it the control flow will simply fall through the labels of the switch
statement.

6.4 (c)
The case label value 2 * iLoc is a constant expression whose value is 6, the same as
the switch expression. Fall-through results in the program output shown in (c).

6.5 (b)
The switch expression, when unboxed, has the value 5. The statement associated
with the default label is executed, and the fall-through continues until the break
statement.

PGJC4_JSE8_OCA.book Page 531 Monday, June 20, 2016 2:31 PM

532 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

6.6 (a), (b), (f), and (j)
In (a), (b), (f), and (j), the string expression involves constant values and evaluates
to "TomTom". Program output is "Hi, TomTom!" In (i), the constant string expression
evaluates to "304Tom" (84+111+109+"Tom"). The first three literals are of type char, and
their int values are added before being concatenated with last String operand. Pro-
gram output is "Whatever!" In (c), (d), (e), (g), and (h), the case label is not a constant
string expression, and the program will not compile.

6.7 (e)
The loop body is executed twice and the program will print 3. The first time the
loop is executed, the variable i changes from 1 to 2 and the variable b changes from
false to true. Then the loop condition is evaluated. Since b is true, the loop body is
executed again. This time the variable i changes from 2 to 3 and the variable b
changes from true to false. The loop condition is then evaluated again. Since b is
now false, the loop terminates and the current value of i is printed.

6.8 (b) and (e)
Both the first and second numbers printed will be 10. Both the loop body and the
update expression will be executed exactly 10 times. Each execution of the loop
body will be directly followed by an execution of the update expression. After-
ward, the condition j < 10 is evaluated to see whether the loop body should be exe-
cuted again.

6.9 (c)
Only (c) contains a valid for loop. The initialization in a for(;;) statement can con-
tain either declarations or a list of expression statements, but not both as attempted
in (a). The loop condition must be of type boolean. (b) tries to use an assignment of
an int value (notice the use of = rather than ==) as a loop condition and, therefore,
is not valid. The loop condition in the for loop (d) tries to use the uninitialized vari-
able i, and the for(;;) loop in (e) is syntactically invalid, as there is only one semi-
colon.

6.10 (f)
The code will compile without error, but will never terminate when run. All the
sections in the for header are optional and can be omitted (but not the semicolons).
An omitted loop condition is interpreted as being true. Thus, a for(;;) loop with
an omitted loop condition will never terminate, unless an appropriate control
transfer statement is encountered in the loop body. The program will enter an infi-
nite loop at (4).

6.11 (b), (d), and (e)
The loop condition in a while statement is not optional. It is missing in (a). It is not
possible to break out of the if statement in (c). Notice that if this if statement had
been placed within a switch statement or a loop, the usage of break would be valid.
Inside a labeled block, a labeled break statement would be required.

PGJC4_JSE8_OCA.book Page 532 Monday, June 20, 2016 2:31 PM

6: CONTROL FLOW 533

6.12 (a) and (d)
"i=1, j=0" and "i=2, j=1" are part of the output. The variable i iterates through the
values 0, 1, and 2 in the outer loop, while j toggles between the values 0 and 1 in
the inner loop. If the values of i and j are equal, the printing of the values is
skipped and the execution continues with the next iteration of the outer loop. The
following can be deduced when the program is run: Variables i and j are both 0
and the execution continues with the update expression of the outer loop. "i=1,
j=0" is printed and the next iteration of the inner loop starts. Variables i and j are
both 1 and the execution continues with the update expression of the outer loop.
"i=2, j=0" is printed and the next iteration of the inner loop starts. "i=2, j=1" is
printed, j is incremented, j < 2 is false, and the inner loop ends. Variable i is incre-
mented, i < 3 is false, and the outer loop ends.

6.13 (b)
The code will fail to compile, since the condition of the if statement is not of type
boolean. The variable i is of type int. There is no conversion between boolean and
other primitive types.

6.14 (c) and (d)
The element type of the array nums must be assignment compatible with the type of
the loop variable, int. Only the element type in (c), Integer, can be automatically
unboxed to an int. The element type in (d) is int.

6.15 (d) and (e)
In the header of a for(:) loop, we can declare only one local variable. This rules out
(a) and (b), as they specify two local variables. Also the array expression in (a), (b),
and (c) is not valid. Only (d) and (e) specify a legal for(:) header.

6.16 (d)
The program will print 1, 4, and 5, in that order. The expression 5/k will throw an
ArithmeticException, since k equals 0. Control is transferred to the first catch clause,
since it is the first clause that can handle the arithmetic exceptions. This exception
handler simply prints 1. The exception has now been caught and normal execution
can resume. Before leaving the try statement, the finally clause is executed. This
clause prints 4. The last statement of the main() method prints 5.

6.17 (b) and (e)
If run with no arguments, the program will print The end. If run with one argument,
the program will print the given argument followed by "The end". The finally
clause will always be executed, no matter how control leaves the try block.

6.18 (c) and (d)
Normal execution will resume only if the exception is caught by the method. The
uncaught exception will propagate up the JVM stack until some method handles
it. An overriding method need simply declare that it can throw a subset of the
checked exceptions that the overridden method can throw. The main() method can
declare that it throws checked exceptions just like any other method. The finally
clause will always be executed, no matter how control leaves the try block.

PGJC4_JSE8_OCA.book Page 533 Monday, June 20, 2016 2:31 PM

534 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

6.19 (a)
The program will print 2 and throw an InterruptedException. An InterruptedException
is thrown in the try block. There is no catch clause to handle the exception, so it will
be sent to the caller of the main() method—that is, to the default exception handler.
Before this happens, the finally clause is executed. The code to print 3 is never
reached.

6.20 (b)
The only thing that is wrong with the code is the ordering of the catch and finally
clauses. If present, the finally clause must always appear last in a try-catch-finally
construct.

6.21 (a)
Overriding methods can specify all, none, or a subset of the checked exceptions
that the overridden method declares in its throws clause. The InterruptedException
is the only checked exception specified in the throws clause of the overridden
method. The overriding method compute() need not specify the Interrupted-
Exception from the throws clause of the overridden method, because the exception
is not thrown here.

7 Object-Oriented Programming

7.1 (a) and (b)
The extends clause is used to specify that a class extends another class. A subclass can
be declared as abstract regardless of whether the superclass was declared as
abstract. Private, overridden, and hidden members from the superclass are not
inherited by the subclass. A class cannot be declared as both abstract and final, since
an abstract class needs to be extended to be useful, and a final class cannot be
extended. The accessibility of the class is not limited by the accessibility of its mem-
bers. A class with all the members declared private can still be declared as public.

7.2 (b) and (e)
The Object class has a public method named equals, but it does not have any
method named length. Since all classes are subclasses of the Object class, they all
inherit the equals() method. Thus, all Java objects have a public method named
equals. In Java, a class can extend only a single superclass, but there is no limit on
how many subclasses can extend a superclass.

7.3 (a), (b), and (d)
Bar is a subclass of Foo that overrides the method g(). The statement a.j = 5 is not
legal, since the member j in the class Bar cannot be accessed through a Foo refer-
ence. The statement b.i = 3 is not legal either, since the private member i cannot
be accessed from outside of the class Foo.

7.4 (g)
It is not possible to invoke the doIt() method in A from an instance method in class C.
The method in C needs to call a method in a superclass two levels up in the inher-

PGJC4_JSE8_OCA.book Page 534 Monday, June 20, 2016 2:31 PM

7: OBJECT-ORIENTED PROGRAMMING 535

itance hierarchy. The super.super.doIt() strategy will not work, since super is a key-
word and cannot be used as an ordinary reference, nor can it be accessed like a
field. If the member to be accessed had been a field, the solution would be to cast
the this reference to the class of the field and use the resulting reference to access
the field. Field access is determined by the declared type of the reference, whereas
the instance method to execute is determined by the actual type of the object
denoted by the reference at runtime.

7.5 (e)
The code will compile without errors. None of the calls to a max() method are
ambiguous. When the program is run, the main() method will call the max() method
on the C object referred to by the reference b with the parameters 13 and 29. This
method will call the max() method in B with the parameters 23 and 39. The max()
method in B will in turn call the max() method in A with the parameters 39 and 23.
The max() method in A will return 39 to the max() method in B. The max() method in
B will return 29 to the max() method in C. The max() method in C will return 29 to
the main() method.

7.6 (c)
The simplest way to print the message in the class Message would be to use msg.text.
The main() method creates an instance of MyClass, which results in the creation of a
Message instance. The field msg denotes this Message object in MySuperclass and is
inherited by the MyClass object, as this field has default accessibility. Thus, the mes-
sage in the Message object can be accessed directly by msg.text in the print() method
of MyClass, and also by this.msg.text and super.msg.text.

7.7 (g)
In the class Car, the static method getModelName() hides the static method of the same
name in the superclass Vehicle. In the class Car, the instance method getRegNo() over-
rides the instance method of the same name in the superclass Vehicle. The declared
type of the reference determines the method to execute when a static method is
called, but the actual type of the object at runtime determines the method to execute
when an overridden method is called.

7.8 (e)
The class MySuper does not have a no-argument constructor. This means that con-
structors in subclasses must explicitly call the superclass constructor and provide
the required parameters. The supplied constructor accomplishes this by calling
super(num) in its first statement. Additional constructors can accomplish this either
by calling the superclass constructor directly using the super() call, or by calling
another constructor in the same class using the this() call, which in turn calls the
superclass constructor. (a) and (b) are not valid, since they do not call the super-
class constructor explicitly. (d) fails, since the super() call must always be the first
statement in the constructor body. (f) fails, since the super() and this() calls cannot
be combined.

PGJC4_JSE8_OCA.book Page 535 Monday, June 20, 2016 2:31 PM

536 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

7.9 (b)
In a subclass without any declared constructors, the default constructor will call
super(). The use of the super() and this() statements are not mandatory as long as
the superclass has a default constructor. If neither super() nor this() is declared as
the first statement in the body of a constructor, then the default super() will implic-
itly be the first statement. A constructor body cannot have both a super() and a
this() statement. Calling super() will not always work, since a superclass might
not have a default constructor.

7.10 (d)
The program will print 12 followed by Test. When the main() method is executed,
it will create a new instance of B by passing "Test" as an argument. This results in
a call to the constructor of B, which has one String parameter. The constructor does
not explicitly call any superclass constructor or any overloaded constructor in B
using a this() call; instead, the no-argument constructor of the superclass A is
called implicitly. The no-argument constructor of A calls the constructor in A that
has two String parameters, passing it the argument list ("1", "2"). This constructor
calls the constructor with one String parameter, passing the argument "12". This
constructor prints the argument, after implicitly invoking the no-argument con-
structor of the superclass Object. Now the execution of all the constructors in A is
completed, and execution continues in the constructor of B. This constructor now
prints the original argument "Test" and returns to the main() method.

7.11 (b) and (c)
Interface declarations do not provide any method implementations and permit
only multiple interface inheritance. An interface can extend any number of inter-
faces and can be extended by any number of interfaces. Fields in interfaces are
always static, and can be declared as static explicitly. Abstract method declara-
tions in interfaces are always non-static, and cannot be declared static.
Interfaces allow only multiple interface inheritance. An interface can extend any
number of interfaces, and can be extended by any number of interfaces. Fields in
interfaces are always static, and can be declared as static explicitly. Static meth-
ods, of course, can be declared as static. Abstract method declarations in inter-
faces are always non-static, and cannot be declared as static.

7.12 (a), (d), (e), and (f)
The keywords protected, private, and final cannot be applied to interface methods.
The keyword public is implied, but can be specified for all interface methods. The
keywords default, abstract, and static can be specified for default, abstract, and
static methods, respectively. The keywords default and static are required for
default and static methods, respectively, but the keyword abstract is optional and
is implicitly implied for abstract methods.

7.13 (a), (f), and (g)
Only the keywords public, static, and final are implicitly implied for interface
variables.

PGJC4_JSE8_OCA.book Page 536 Monday, June 20, 2016 2:31 PM

7: OBJECT-ORIENTED PROGRAMMING 537

7.14 (e)
(1): The final static constant is not initialized.
(2): The abstract method cannot have an implementation.
(3): The static method is missing the implementation.
(4): The default method cannot be final.

7.15 (b) and (c)
The default instance method printSlogan() is inherited by the class Company.
(a): It can be called from a non-static context (instance method testSlogan()) by its
simple name, but not from a static context (static method main()).
(b), (c): An instance method can be invoked on an instance via a reference, regard-
less of whether it is in a static or non-static context.
(d), (e): An instance method cannot be invoked via a reference type, but only on an
instance via a reference; that is, you cannot make a static reference to a non-static
method.

7.16 (e)
The static method printSlogan() is not inherited by the class Firm. It can be invoked
by using a static reference, the name of the interface in which it is declared, regard-
less of whether the call is in a static or a non-static context.

7.17 (c)
The instance method at (3) overrides the default method at (1). The static method
at (2) is not inherited by the class RaceA. The instance method at (4) does not over-
ride the static method at (2).
The method to be invoked by the call at (5) is determined at runtime by the object
type of the reference, which in this case is Athlete, resulting in the method at (3)
being invoked. Similarly, the call at (6) will invoke the instance method at (4).

7.18 (a)
The program will not compile, because the overriding method at (2) cannot have
narrower accessibility than the overridden method at (1). The method at (1) has
public accessibility, whereas the method at (2) has package accessibility.

7.19 (a), (c), and (d)
Fields in interfaces declare named constants, and are always public, static, and
final. None of these modifiers is mandatory in a constant declaration. All named
constants must be explicitly initialized in the declaration.

7.20 (a) and (d)
The keyword implements is used when a class implements an interface. The key-
word extends is used when an interface inherits from another interface or a class
inherits from another class.

7.21 (d)
The code will compile without errors. The class MyClass declares that it implements
the interfaces Interface1 and Interface2. Since the class is declared as abstract, it
does not need to implement all abstract method declarations defined in these

PGJC4_JSE8_OCA.book Page 537 Monday, June 20, 2016 2:31 PM

538 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

interfaces. Any non-abstract subclasses of MyClass must provide the missing method
implementations. The two interfaces share a common abstract method declaration
void g(). MyClass provides an implementation for this abstract method declaration
that satisfies both Interface1 and Interface2. Both interfaces provide declarations
of constants named VAL_B. This can lead to ambiguity when referring to VAL_B by its
simple name from MyClass. The ambiguity can be resolved by using the qualified
names: Interface1.VAL_B and Interface2.VAL_B. However, there are no problems
with the code as it stands.

7.22 (a) and (c)
Declaration (b) fails, since it contains an illegal forward reference to its own named
constant. The type of the constant is missing in declaration (d). Declaration (e) tries
(illegally) to use the protected modifier, even though named constants always have
public accessibility. Such constants are implicitly public, static, and final.

7.23 (c)
The program will throw a java.lang.ClassCastException in the assignment at (3) at
runtime. The statement at (1) will compile, since the assignment is done from a
subclass reference to a superclass reference. The cast at (2) assures the compiler that
arrA refers to an object that can be cast to type B[]. This will work when run, since
arrA will refer to an object of type B[]. The cast at (3) assures the compiler that arrA
refers to an object that can be cast to type B[]. This will not work when run, since
arrA will refer to an object of type A[].

7.24 (d) and (f)
(4) and (6) will cause a compile-time error, since an attempt is made to assign a ref-
erence value of a supertype object to a reference of a subtype. The type of the
source reference value is MyClass and the type of the destination reference is
MySubclass. (1) and (2) will compile, since the reference is assigned a reference value
of the same type. (3) will also compile, since the reference is assigned a reference
value of a subtype.

7.25 (e)
Only the assignment I1 b = obj3 is valid. The assignment is allowed, since C3
extends C1, which implements I1. The assignment obj2 = obj1 is not legal, since C1
is not a subclass of C2. The assignments obj3 = obj1 and obj3 = obj2 are not legal,
since neither C1 nor C2 is a subclass of C3. The assignment I1 a = obj2 is not legal,
since C2 does not implement I1. Assignment I2 c = obj1 is not legal, since C1 does
not implement I2.

7.26 (b)
The compiler will allow the statement, as the cast is from the supertype (Super) to
the subtype (Sub). However, if at runtime the reference x does not denote an object
of the type Sub, a ClassCastException will be thrown.

7.27 (b)
The expression (o instanceof B) will return true if the object referred to by o is of
type B or a subtype of B. The expression (!(o instanceof C)) will return true unless

PGJC4_JSE8_OCA.book Page 538 Monday, June 20, 2016 2:31 PM

7: OBJECT-ORIENTED PROGRAMMING 539

the object referred to by o is of type C or a subtype of C. Thus, the expression (o
instanceof B) && (!(o instanceof C)) will return true only if the object is of type B
or a subtype of B that is not C or a subtype of C. Given objects of the classes A, B, and
C, this expression will return true only for objects of class B.

7.28 (d)
The program will print all the letters I, J, C, and D at runtime. The object referred to
by the reference x is of class D. Class D extends class C and implements J, and class
C implements interface I. This makes I, J, and C supertypes of class D. The reference
value of an object of class D can be assigned to any reference of its supertypes and,
therefore, is an instanceof these types.

7.29 (a)
The signatures yingyang(Integer[]) and yingyang(Integer...) are equivalent and,
therefore, are not permitted in the same class.

7.30 (c)
The calls to the compute() method in the method declarations at (2) and at (3) are to
the compute() method declaration at (1), as the argument is always an int[].

The method call at (4) calls the method at (2). The signature of the call at (4) is

compute(int[], int[])

which matches the signature of the method at (2). No implicit array is created.

The method call in (5) calls the method at (1). An implicit array of int is created to
store the argument values.

The method calls in (6) and (7) call the method in (3). Note the type of the variable
arity parameter in (3): an int[][]. The signature of the calls at (6) and (7) is

compute(int[], int[][])

which matches the signature of the method at (3). No implicit array is created.

7.31 (e)
The program will print 2 when System.out.println(ref2.f()) is executed. The
object referenced by ref2 is of class C, but the reference is of type B. Since B contains
a method f(), the method call will be allowed at compile time. During execution it
is determined that the object is of class C, and dynamic method lookup will cause
the overriding method in C to be executed.

7.32 (c)
The program will print 1 when run. The f() methods in A and B are private, and are
not accessible by the subclasses. Because of this, the subclasses cannot overload or
override these methods, but simply define new methods with the same signature.
The object being called is of class C. The reference used to access the object is of type
B. Since B contains a method g(), the method call will be allowed at compile time.
During execution it is determined that the object is of class C, and dynamic method
lookup will cause the overriding method g() in B to be executed. This method calls

PGJC4_JSE8_OCA.book Page 539 Monday, June 20, 2016 2:31 PM

540 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

a method named f. It can be determined during compilation that this can refer to
only the f() method in B, since the method is private and cannot be overridden.
This method returns the value 1, which is printed.

7.33 (b), (c), and (d)
The code as it stands will compile. The use of inheritance in this code defines a
Planet is-a Star relationship. The code will fail if the name of the field starName is
changed in the Star class, since the subclass Planet tries to access it using the name
starName. An instance of Planet is not an instance of HeavenlyBody. Neither Planet nor
Star implements HeavenlyBody.

7.34 (b)
The code will compile. The code will not fail to compile if the name of the field
starName is changed in the Star class, since the Planet class does not try to access the
field by name, but instead uses the public method describe() in the Star class for
that purpose. An instance of Planet is not an instance of HeavenlyBody, since it nei-
ther implements HeavenlyBody nor extends a class that implements HeavenlyBody.

7.35 (e)
(a) to (f) are all true; therefore (e) is not.

8 Fundamental Classes

8.1 (b)
The method hashCode() in the Object class returns a hash code value of type int.

8.2 (e)
All arrays are genuine objects and inherit all the methods defined in the Object
class, including the clone() method. Neither the hashCode() method nor the
equals() method is declared as final in the Object class, and it cannot be guaran-
teed that implementations of these methods will differentiate among all objects.

8.3 (a)
The clone() method of the Object class will throw a CloneNotSupportedException if
the class of the object does not implement the Cloneable interface.

8.4 (a), (c), and (d)
The class java.lang.Void is considered a wrapper class, although it does not wrap
any value. There is no class named java.lang.Int, but there is a wrapper class
named java.lang.Integer. A class named java.lang.String also exists, but it is not a
wrapper class since all strings in Java are objects.

8.5 (c) and (d)
The classes Character and Boolean are non-numeric wrapper classes and do not
extend the Number class. The classes Byte, Short, Integer, Long, Float, and Double are
numeric wrapper classes that extend the abstract Number class.

PGJC4_JSE8_OCA.book Page 540 Monday, June 20, 2016 2:31 PM

8: FUNDAMENTAL CLASSES 541

8.6 (a), (b), and (d)
All instances of concrete wrapper classes are immutable. The Number class is an
abstract class.

8.7 (b) and (c)
All instances of wrapper classes except Void and Character have a constructor that
accepts a single String parameter. The class Object has only a no-argument
constructor.

8.8 (e)
While all numeric wrapper classes have the methods byteValue(), doubleValue(),
floatValue(), intValue(), longValue(), and shortValue(), only the Boolean class has
the booleanValue() method. Likewise, only the Character class has the charValue()
method.

8.9 (b) and (d)
String is not a wrapper class. All wrapper classes except Void have a compareTo()
method. Only the numeric wrapper classes have an intValue() method. The Byte
class, like all other numeric wrapper classes, extends the Number class.

8.10 (a)
Using the new operator creates a new object. Boxing also creates a new object if one
is not already interned from before.

8.11 (b) and (e)
The operators - and & cannot be used in conjunction with a String object. The oper-
ators + and += perform concatenation on strings, and the dot operator accesses
members of the String object.

8.12 (d)
The expression str.substring(2,5) will extract the substring "kap". The method
extracts the characters from index 2 to index 4, inclusive.

8.13 (d)
The program will print str3str1 when run. The concat() method will create and
return a new String object, which is the concatenation of the current String object
and the String object given as an argument. The expression statement
str1.concat(str2) creates a new String object, but its reference value is not stored
after the expression is evaluated. Therefore this String object gets discarded.

8.14 (c)
The trim() method of the String class returns a string where both the leading and
trailing whitespace of the original string have been removed.

8.15 (a) and (c)
The String class and all wrapper classes are declared as final and, therefore, cannot
be extended. The clone() method is declared as protected in the Object class. String
objects and wrapper class objects are immutable and, therefore, cannot be modi-

PGJC4_JSE8_OCA.book Page 541 Monday, June 20, 2016 2:31 PM

542 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

fied. The class String and char array types are unrelated, resulting in a compile-
time error.

8.16 (d)
The constant expressions "ab" + "12" and "ab" + 12 will, at compile time, be eval-
uated to the string-valued constant "ab12". Both variables s and t are assigned a ref-
erence to the same interned String object containing "ab12". The variable u is
assigned a new String object, created by using the new operator.

8.17 (a), (c), (d), (f), and (j)
The String class has constructors with the parameter lists given in (a), (c), (d), (f),
and (j).

8.18 (e)
The String class has no reverse() method.

8.19 (b)
The reference value in the reference str1 never changes; it always refers to the
string literal "lower". The calls to toUpperCase() and replace() return a new String
object whose reference value is ignored.

8.20 (d)
The call to the putO() method does not change the String object referred to by the
s1 reference in the main() method. The reference value returned by the call to the
concat() method is ignored.

8.21 (a)
The code will fail to compile, since the expression (s == sb) is illegal. It compares
references of two classes that are not related.

8.22 (e)
The program will compile without errors and will print have a when run. The
contents of the string buffer are truncated to 6 characters by the method call
sb.setLength(6).

8.23 (a), (b), (d), and (e)
The StringBuilder class has only constructors with the parameter lists given in (a),
(b), (d), and (e).

8.24 (a)
The StringBuilder class does not define a trim() method.

8.25 (b)
The references sb1 and sb2 are not aliases. The StringBuilder class does not override
the equals() method; hence the answer is (b).

8.26 (a)
The StringBuilder class does not override the hashCode() method, but the String
class does. The references s1 and s2 refer to a String object and a StringBuilder object,
respectively. The hash values of these objects are computed by the hashCode()

PGJC4_JSE8_OCA.book Page 542 Monday, June 20, 2016 2:31 PM

9: OBJECT LIFETIME 543

method in the String and the Object class, respectively—giving different results.
The references s1 and s3 refer to two different String objects that are equal; hence
they have the same hash value.

8.27 (b)
The call to the putO() method changes the StringBuilder object referred to by the s1
reference in the main() method. So does the call to the append() method.

9 Object Lifetime

9.1 (e)
An object is eligible for garbage collection only if all remaining references to the
object are from other objects that are also eligible for garbage collection. Therefore,
if an object obj2 is eligible for garbage collection and object obj1 contains a refer-
ence to it, then object obj1 must also be eligible for garbage collection. Java does not
have a keyword delete. An object will not necessarily be garbage collected imme-
diately after it becomes unreachable, but the object will be eligible for garbage col-
lection. Circular references do not prevent objects from being garbage collected;
only reachable references do. An object is not eligible for garbage collection as long
as the object can be accessed by any live thread. An object that is eligible for gar-
bage collection can be made non-eligible if the finalize() method of the object cre-
ates a reachable reference to the object.

9.2 (b)
Before (1), the String object initially referenced by arg1 is denoted by both msg and
arg1. After (1), the String object is denoted by only msg. At (2), reference msg is
assigned a new reference value. This reference value denotes a new String object
created by concatenating the contents of several other String objects. After (2),
there are no references to the String object initially referenced by arg1. The String
object is now eligible for garbage collection.

9.3 (d)
It is difficult to say how many objects are eligible for garbage collection when con-
trol reaches (1), because some of the eligible objects may have already been finalized.

9.4 (a)
All the objects created in the loop are reachable via p, when control reaches (1).

9.5 (b)
The Object class defines a protected finalize() method. All classes inherit from
Object; thus, all objects have a finalize() method. Classes can override the
finalize() method and, as with all overriding, the new method must not reduce
the accessibility. The finalize() method of an eligible object is called by the gar-
bage collector to allow the object to do any cleaning up before the object is
destroyed. When the garbage collector calls the finalize() method, it will ignore
any exceptions thrown by the finalize() method. If the finalize() method is called

PGJC4_JSE8_OCA.book Page 543 Monday, June 20, 2016 2:31 PM

544 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

explicitly, normal exception handling occurs when an exception is thrown during
the execution of the finalize() method; that is, exceptions are not simply ignored.
Calling the finalize() method does not in itself destroy the object. Chaining of the
finalize() method is not enforced by the compiler, and it is not mandatory to call
the overridden finalize() method.

9.6 (d)
The finalize() method is like any other method: It can be called explicitly if it is
accessible. However, such a method is intended to be called by the garbage collec-
tor to clean up before an object is destroyed. Overloading the finalize() method is
allowed, but only the method with the original signature will be called by the gar-
bage collector. The finalize() method in the Object class is protected. This means
that any overriding method must be declared as either protected or public. The
finalize() method in the Object class specifies a Throwable object in its throws clause.
An overriding definition of this method can throw any type of Throwable. Overrid-
ing methods can limit the range of throwables to unchecked exceptions or specify
no exceptions at all. Further overriding definitions of this method in subclasses
will then not be able to throw checked exceptions.

9.7 (d) and (g)
(a), (b), (c), (j), (k), and (l) reduce the visibility of the inherited method. In (e), (f),
(h), and (i), the call to the finalize() method of the superclass can throw a
Throwable, which is not handled by the method. The Throwable superclass is not
assignable to the Exception subclass.

9.8 (e)
It is not guaranteed if and when garbage collection will occur, nor in which order
the objects will be finalized. However, it is guaranteed that the finalization of an
object will be run only once. Hence, (e) cannot possibly be a result from running
the program.

9.9 (c) and (e)
It is not guaranteed if and when garbage collection will occur, nor in which order
the objects will be finalized. Thus, the program may not print anything. If garbage
collection does take place, the MyString object created in the program may get final-
ized before the program terminates. In that case, the finalize() method will print
A, as the string in the field str is not changed by the concat() method. Keep in mind
that a String object is immutable.

9.10 (c), (e), and (f)
The static initializer blocks (a) and (b) are not legal, since the fields alive and STEP
are non-static and final, respectively. (d) is not a syntactically legal static initial-
izer block. The static block in (e) will have no effect, as it executes the empty state-
ment. The static block in (f) will change the value of the static field count from 5 to 1.

9.11 (c)
The program will compile, and print 50, 70, 0, 20, 0 at runtime. All fields are
given default values unless they are explicitly initialized. Field i is assigned the

PGJC4_JSE8_OCA.book Page 544 Monday, June 20, 2016 2:31 PM

10: THE ARRAYLIST<E> CLASS AND LAMBDA EXPRESSIONS 545

value 50 in the static initializer block that is executed when the class is initialized.
This assignment will override the explicit initialization of field i in its declaration
statement. When the main() method is executed, the static field i is 50 and the static
field n is 0. When an instance of the class is created using the new operator, the value
of static field n (i.e., 0) is passed to the constructor. Before the body of the construc-
tor is executed, the instance initializer block is executed, which assigns the values
70 and 20 to the fields j and n, respectively. When the body of the constructor is exe-
cuted, the fields i, j, k, and n and the parameter m have the values 50, 70, 0, 20, and
0, respectively.

9.12 (f)
This class has a blank final boolean instance variable active. This variable must be
initialized when an instance is constructed, or else the code will not compile. This
also applies to blank final static variables. The keyword static is used to signify
that a block is a static initializer block. No keyword is used to signify that a block
is an instance initializer block. (a) and (b) are not instance initializers blocks, and
(c), (d), and (e) fail to initialize the blank final variable active.

9.13 (c)
The program will compile, and print 2, 3, and 1 at runtime. When the object is cre-
ated and initialized, the instance initializer block is executed first, printing 2. Then
the instance initializer expression is executed, printing 3. Finally, the constructor
body is executed, printing 1. The forward reference in the instance initializer block
is legal, as the use of the field m is on the left-hand side of the assignment.

9.14 (c) and (e)
Line A will cause an illegal redefinition of the field width. Line B uses an illegal for-
ward reference to the fields width and height. The assignment in Line C is legal.
Line D is an assignment statement, so it is illegal in this context. Line E declares a
local variable inside an initializer block, with the same name as the instance vari-
able width, which is allowed. The simple name in this block will refer to the local
variable. To access the instance variable width, the this reference must be used in
this block.

10 The ArrayList<E> Class and Lambda Expressions

10.1 (h)
The method remove() can be used to delete an element at a specific index in an
ArrayList.
The method clear() can be used to delete all elements in an ArrayList.
The method add(int, E) can be used to insert an element at a specific index in an
ArrayList.
The method add() can be used to append an element at the end of an ArrayList.
The method set() can be used to replace the element at a specific index with
another element in an ArrayList.

PGJC4_JSE8_OCA.book Page 545 Monday, June 20, 2016 2:31 PM

546 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

The method contains() can be used to determine whether an element is in an Array-
List.
There is no method to determine the current capacity of an ArrayList.

10.2 (e)
The for(;;) loop correctly increments the loop variable so that all the elements in
the list are traversed. Removing elements using the for(;;) loop does not throw a
ConcurrentModificationException at runtime.

10.3 (b) and (c)
In the method doIt1(), one of the common elements ("Ada") between the two lists
is reversed. The value null is added to only one of the lists but not the other.
In the method doIt2(), the two lists have common elements. Swapping the ele-
ments in one list does not change their positions in the other list.

10.4 (c)
The element at index 2 has the value null. Calling the equals() method on this ele-
ment throws a NullPointerException.

10.5 (f)
Deleting elements when traversing a list requires care, as the size changes and any
elements to the right of the deleted element are shifted left. Incrementing the loop
variable after deleting an element will miss the next element, as is the case with the
last occurrence of "Bob". Removing elements using the for(;;) loop does not throw
a ConcurrentModificationException at runtime.

10.6 (f)
The while loop will execute as long as the remove() methods returns true—that is,
as long as there is an element with the value "Bob" in the list. The while loop body
is the empty statement. The remove() method does not throw an exception if an ele-
ment value is null, or if it is passed a null value.

10.7 (f)
A functional interface can be implemented by lambda expressions and classes.
A functional interface declaration can have only one abstract method declaration.
In the body of a lambda expression, all members in the enclosing class can be
accessed.
In the body of a lambda expression, only effectively final local variables in the
enclosing scope can be accessed.
A lambda expression in a program can implement more than one functional inter-
face. For example, the lambda expression (i -> i%2 == 0) can be the target type of
both the functional interfaces IntPredicate and Predicate<Integer>.

10.8 (a) and (c)
(1) redeclares the local variable p from the enclosing scope, which is not legal.

PGJC4_JSE8_OCA.book Page 546 Monday, June 20, 2016 2:31 PM

10: THE ARRAYLIST<E> CLASS AND LAMBDA EXPRESSIONS 547

In (2), the equals() method of the String class is called, because it is invoked on the
textual representation of the parameter. In the other statements, the equals()
method of the object referred to by the parameter is called.
The lambda body in (3) is a statement block with an expression whose value must
be returned by the return statement.
(4) and (5) access static members in the class, which is legal.
In (6), the parameter name lock2 shadows the static variable by the same name, but
is a local variable in the lambda expression. The static variable is referred to using
the class name.

10.9 (e), (f), (g), and (i)
Assignments in (5), (6), (7), and (9) will not compile. We must check whether the
function type of the target type and the type of the lambda expression are compat-
ible. The function type of the target type p1 in the assignment statements from (1)
to (5) is String -> void, or a void return. The function type of the target type p2 in
the assignment statements from (6) to (10) is String -> String, or a non-void return.
In the following code, the functional type of the target type is shown in a comment
with the prefix LHS (left-hand side), and the type of the lambda expression for each
assignment from (1) to (10) is shown in a comment with the prefix RHS (right-hand
side).

 Funky1 p1; // LHS: String -> void
 p1 = s -> System.out.println(s); // (1) RHS: String -> void
 p1 = s -> s.length(); // (2) RHS: String -> int
 p1 = s -> s.toUpperCase(); // (3) RHS: String -> String
 p1 = s -> { s.toUpperCase(); }; // (4) RHS: String -> void
// p1 = s -> { return s.toUpperCase(); }; // (5) RHS: String -> String

 Funky2 p2; // LHS: String -> String
// p2 = s -> System.out.println(s); // (6) RHS: String -> void
// p2 = s -> s.length(); // (7) RHS: String -> int
 p2 = s -> s.toUpperCase(); // (8) RHS: String -> String
// p2 = s -> { s.toUpperCase(); }; // (9) RHS: String -> void
 p2 = s -> { return s.toUpperCase(); }; // (10)RHS: String -> String

The non-void return of a lambda expression with an expression statement as the
body can be interpreted as a void return, if the function type of the target type
returns void. This is the case in (2) and (3). The return value is ignored. The type
String -> String of the lambda expression in (5) is not compatible with the function
type String -> void of the target type p1.
The type of the lambda expression in (6), (7), and (9) is not compatible with the
function type String -> String of the target type p2.

10.10 (d)
The lambda expression filters all integer values that are both negative and even
numbers. These values are replaced with their absolute values in the integer array.
The functional interface java.util.function.IntPredicate has the abstract method:
boolean test(int i).

PGJC4_JSE8_OCA.book Page 547 Monday, June 20, 2016 2:31 PM

548 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

10.11 (d)
The three interfaces are functional interfaces. InterfaceB explicitly provides an
abstract method declaration of the public method equals() from the Object class,
but such declarations are excluded from the definition of a functional interface.
Thus InterfaceB effectively has only one abstract method. A functional interface
can be implemented by a concrete class, such as Beta. The function type of the tar-
get type in the assignments (1) to (3) is void -> void. The type of the lambda expres-
sion in (1) to (3) is also void -> void. The assignments (1) to (3) are legal.

The assignment in (4) is legal. Subtype references are assigned to supertype refer-
ences. References o, a, and c refer to the lambda expression in (3).

The assignment in (5) is legal. The reference b has the type InterfaceB, and class Beta
implements this interface.

(6), (7), and (8) invoke the method doIt(). (6) evaluates the lambda expression in
(3), printing Jingle|. (7) invokes the doIt() method on an object of class Beta, print-
ing Jazz|. (8) also evaluates the lambda expression in (3), printing Jingle|.

In (9), the reference o is cast down to InterfaceA. The reference o actually refers to
the lambda expression in (3), which has target type InterfaceC. This interface is a
subtype of InterfaceA. The subtype is cast to a supertype, which is allowed, so no
ClassCastException is thrown at runtime. Invoking the doIt() method again results
in evaluation of the lambda expression in (3), printing Jingle|.

Apart from the declarations of the lambda expressions, the rest of the code is plain-
vanilla Java. Note also that the following assignment that defines a lambda expres-
sion would not be valid, since the Object class is not a functional interface and
therefore cannot provide a target type for the lambda expression:

Object obj = () -> System.out.println("Jingle"); // Compile-time error!

11 Date and Time

11.1 (e)
The LocalDateTime class does not provide the isLeapYear() method.

The LocalTime class does not provide the isEqual() method.

The Period class does not provide the withWeeks() method, but does provide the
ofWeeks() static method.

Both the Period and LocalTime classes do not provide the plusWeeks() method.

11.2 (e)
The date reference never gets updated, as the return value is ignored. If it had been
updated, the correct answer would have been (c). The LocalDate.getMonth() method
returns a Month enum constant—in this case, Month.MARCH. The LocalDate.getMonth-
Value() method returns the month as a value between 1 and 12—in this case, 3.

11.3 (b), (c), (e), and (g)
(a): The month numbers start with 1. August has month value 8.

PGJC4_JSE8_OCA.book Page 548 Monday, June 20, 2016 2:31 PM

11: DATE AND TIME 549

(d): Invalid month (0) and day (0) arguments in the call to the of() method result

in a DateTimeException being thrown at runtime.

(f): The LocalDate class does not provide a public constructor.

11.4 (c), (d), and (f)
(a): Invalid argument for the minutes (0–59).

(b): The LocalTime class does not provide a public constructor.

(c): The time assigned is 09:00.

(d): The time assigned is 00:00.

(e): There is no withHours() method, but there is a withHour() method in the Local-
Time class.

(f): The time assigned is 11:45.

11.5 (c)
Both the hour and minutes are normalized by the plus methods, and the time of

day wraps around midnight. The calculation of time.plusHours(10).plusMinutes(120)
proceeds as follows:

12:00 + 10 hours ==> 22:00 + 120 min (i.e., 2 hrs.) ==> 00:00

11.6 (d)
The calculation of p1.plus(p2).plus(p1) proceeds as follows:

P1Y1M1D + P2Y12M30D ==> P3Y13M31D + P1Y1M1D ==> P4Y14M32D

11.7 (c)
The calculation of date.withYear(5).plusMonths(14) proceeds as follows:

2015-01-01 with year 5 ==> 0005-01-01 + 14 months (i.e., 1 year 2 months) ==>
0006-03-01

11.8 (a), (d), (e), (g), and (i)
The between() and until() methods return a Period, which can be negative. The

isAfter(), isBefore(), between(), and until() methods are strict in the sense that the

end date is excluded. The compareTo() method returns 0 if the two dates are equal,

a negative value if date1 is less than date2, and a positive value if date1 is greater

than date2.

11.9 (e)
(a): The DateTimeFormatter class provides factory methods to obtain both pre-

defined and customized formatters.

(b): The styles defined by the java.time.format.FormatStyle enum type are locale

sensitive.

(c): The ofLocalizedDate() method of the DateTimeFormatter class returns a formatter

that is based on a format style (a constant of the FormatStyle enum type) passed as

an argument to the method.

(d): The pattern "yy-mm-dd" cannot be used to create a formatter that can format a

LocalDate object. The letter m stands for minutes of the hour, which is not a part of

a date.

PGJC4_JSE8_OCA.book Page 549 Monday, June 20, 2016 2:31 PM

550 APPENDIX C: ANNOTATED ANSWERS TO REVIEW QUESTIONS

11.10 (a), (b), (c), and (f)
(a), (b), (c): The input string matches the pattern. The input string specifies the
mandatory parts of both a date and a time, needed by the respective method to
construct either a LocalTime, a LocalDate, or a LocalDateTime.
To use the pattern for formatting, the temporal object must provide the parts cor-
responding to the pattern letters in the pattern. The LocalTime object in (d) does not
have the date part required by the pattern. The LocalDate object in (e) does not have
the time part required by the pattern. Both (d) and (e) will throw an Unsupported-
TemporalTypeException. Only the LocalDateTime object in (f) has both the date and
time parts required by the pattern.

11.11 (b), (e), and (f)
The input string matches the pattern. It specifies the date-based values that can be
used to construct a LocalDate object in (b), based on the date-related pattern letters
in the pattern. No time-based values can be interpreted from the input string, as
this pattern has only date-related pattern letters. (a) and (c), which require a time
part, will throw a DateTimeParseException.
To use the pattern for formatting, the temporal object must provide values for the
parts corresponding to the pattern letters in the pattern. The LocalTime object in (d)
does not have the date part required by the pattern. (d) will throw an Unsupported-
TemporalTypeException. The LocalDate object in (e) has the date part required by the
pattern, as does the LocalDateTime object in (f). In (f), only the date part of the Local-
DateTime object is formatted.

11.12 (e)
(a), (b), (c), (d), and (f) result in a DateTimeParseException when parsing.
(a): The pattern letter h represents hour in the day, but requires AM/PM informa-
tion to resolve the hour in a 24-hour clock (i.e., pattern letter a), which is missing.
(b): The pattern letter M is interpreted correctly as month of the year (value 5).
Matching the pattern letter h is the problem, as explained for (a).
(c), (d): The pattern letter a cannot be resolved from the input string, as an AM/PM
marker is missing in the input string.
(e): The parse succeeds, with the LocalTime object having the value 09:05. Format-
ting this object with the formatter results in the output string: 5 minutes past 9.
(f): The letter pattern mm cannot be resolved, as the minutes value has only one digit
(i.e., 5) in the input string.
(g): The parse succeeds, with the resulting LocalTime object having the value 09:00.
The month value 5 is ignored. Formatting this object with the formatter results in
an UnsupportedTemporalTypeException, because now the pattern letter M requires a
month value, which is not part of a LocalTime object.

11.13 (d)
(a): The formatter will format a LocalTime object, or the time part of a LocalDateTime
object, but not a LocalDate object, as it knows nothing about formatting the date
part.

PGJC4_JSE8_OCA.book Page 550 Monday, June 20, 2016 2:31 PM

11: DATE AND TIME 551

(b): The formatter will format a LocalDate object, or the date part of a LocalDateTime
object, but not a LocalTime object, as it knows nothing about formatting the time
part.
(c): The formatter will format a LocalDateTime object, but not a LocalDate object or a
LocalTime object, as it will format only temporal objects with both date and time
parts.
The program throws a java.time.temporal.UnsupportedTemporalTypeException in all
cases.

PGJC4_JSE8_OCA.book Page 551 Monday, June 20, 2016 2:31 PM

