
1

1Basics of Java Programming

Programmer I Exam Objectives
[1.2] Define the structure of a Java class

❍ See also §3.1, p. 48.
§1.2, p. 2

[1.3] Create executable Java applications with a main method;
run a Java program from the command line; including
console output
❍ See also §4.3, p. 107.

§1.10, p. 16

[1.5] Compare and contrast the features and components of Java
such as: platform independence, object orientation,
encapsulation, etc.

§1.12, p. 21

[2.3] Know how to read or write to object fields §1.3, p. 4
Supplementary Objectives
• Introduce the basic terminology and concepts in object-

oriented programming: classes, objects, references, fields,
methods, members, inheritance, and associations

Chapter 1

• Format and print values to the terminal window §1.11, p. 18

PGJC4_JSE8_OCA.book Page 1 Monday, June 20, 2016 2:31 PM

2 CHAPTER 1: BASICS OF JAVA PROGRAMMING

1.1 Introduction

Before embarking on the road to Java programmer certification, it is important to
understand the basic terminology and concepts in object-oriented programming
(OOP). In this chapter, the emphasis is on providing an introduction to OOP, rather
than exhaustive coverage. In-depth coverage of the concepts follows in subsequent
chapters of the book.

Java supports the writing of many different kinds of executables: applications,
applets, and servlets. The basic elements of a Java application are introduced in
this chapter. The old adage that practice makes perfect is certainly true when learn-
ing a programming language. To encourage programming on the computer, the
mechanics of compiling and running a Java application are outlined.

1.2 Classes

One of the fundamental ways in which we handle complexity is by using abstrac-
tions. An abstraction denotes the essential properties and behaviors of an object
that differentiate it from other objects. The essence of OOP is modeling abstrac-
tions, using classes and objects. The hard part of this endeavor is finding the right
abstraction.

A class denotes a category of objects, and acts as a blueprint for creating objects. A
class models an abstraction by defining the properties and behaviors for the objects
representing the abstraction. An object exhibits the properties and behaviors
defined by its class. The properties of an object of a class are also called attributes,
and are defined by fields in Java. A field in a class is a variable that can store a value
that represents a particular property of an object. The behaviors of an object of a
class are also known as operations, and are defined using methods in Java. Fields and
methods in a class declaration are collectively called members.
An important distinction is made between the contract and the implementation that
a class provides for its objects. The contract defines which services are provided,
and the implementation defines how these services are provided by the class. Clients
(i.e., other objects) need to know only the contract of an object, and not its imple-
mentation, to avail themselves of the object’s services.

As an example, we will implement different versions of a class that models the
abstraction of a stack that can push and pop characters. The stack will use an array
of characters to store the characters, and a field to indicate the top element in the
stack. Using Unified Modeling Language (UML) notation, a class called CharStack
is graphically depicted in Figure 1.1, which models the abstraction. Both fields and
method names are shown in Figure 1.1a.

PGJC4_JSE8_OCA.book Page 2 Monday, June 20, 2016 2:31 PM

1.2: CLASSES 3

Declaring Members: Fields and Methods
Example 1.1 shows the declaration of the class CharStack depicted in Figure 1.1. Its
intention is to illustrate the salient features of a class declaration in Java, rather than
an effective implementation of stacks. The character sequence // in the code indi-
cates the start of a single-line comment that can be used to document the code. All
characters after this sequence and to the end of the line are ignored by the compiler.

A class declaration contains member declarations that define the fields and the
methods of the objects the class represents. In the case of the class CharStack, it has
two fields declared at (1):

• stackArray, which is an array to hold the elements of the stack (in this case,
characters)

• topOfStack, which denotes the top element of the stack (i.e., the index of the last
character stored in the array)

The class CharStack has five methods, declared at (3), that implement the essential
operations on a stack:

• push() pushes a character on to the stack.

• pop() removes and returns the top element of the stack.

• peek() returns the top element of the stack for inspection.

• isEmpty() determines whether the stack is empty.

• isFull() determines whether the stack is full.

The class declaration also has a method-like declaration at (2) with the same name
as the class. Such declarations are called constructors. As we shall see, a constructor
is executed when an object is created from the class. However, the implementation
details in the example are not important for the present discussion.

Figure 1.1 UML Notation for Classes

CharStack

stackArray

peek()

topOfStack

push()
pop()

CharStack

(a) Expanded Form

isFull()
isEmpty()

(b) Abbreviated Form

Fields

Methods

Class Name

PGJC4_JSE8_OCA.book Page 3 Monday, June 20, 2016 2:31 PM

4 CHAPTER 1: BASICS OF JAVA PROGRAMMING

Example 1.1 Basic Elements of a Class Declaration

// File: CharStack.java
public class CharStack { // Class name
 // Class Declarations:

 // Fields: (1)
 private char[] stackArray; // The array implementing the stack
 private int topOfStack; // The top of the stack

 // Constructor: (2)
 public CharStack(int capacity) {
 stackArray = new char[capacity];
 topOfStack = -1;
 }

 // Methods: (3)
 public void push(char element) { stackArray[++topOfStack] = element; }
 public char pop() { return stackArray[topOfStack--]; }
 public char peek() { return stackArray[topOfStack]; }
 public boolean isEmpty() { return topOfStack == -1; }
 public boolean isFull() { return topOfStack == stackArray.length - 1; }
}

1.3 Objects

Class Instantiation, Reference Values, and References
The process of creating objects from a class is called instantiation. An object is an
instance of a class. The object is constructed using the class as a blueprint and is
a concrete instance of the abstraction that the class represents. An object must be
created before it can be used in a program.
A reference value is returned when an object is created. A reference value denotes a
particular object. A variable denotes a location in memory where a value can be
stored. An object reference (or simply reference) is a variable that can store a reference
value. Thus a reference provides a handle to an object, as it can indirectly denote an
object whose reference value it holds. In Java, an object can be manipulated only via
its reference value, or equivalently by a reference that holds its reference value.
This setup for manipulating objects requires that a reference be declared, a class be
instantiated to create an object, and the reference value of the object created be
stored in the reference. These steps are accomplished by a declaration statement.

CharStack stack1 = new CharStack(10); // Stack length: 10 chars

In the preceding declaration statement, the left-hand side of the = operator declares
that stack1 is a reference of class CharStack. The reference stack1, therefore, can refer
to objects of class CharStack.

PGJC4_JSE8_OCA.book Page 4 Monday, June 20, 2016 2:31 PM

1.3: OBJECTS 5

The right-hand side of the = operator creates an object of class CharStack. This step
involves using the new operator in conjunction with a call to a constructor of the
class (new CharStack(10)). The new operator creates an instance of the CharStack class
and returns the reference value of this instance. The = operator (called the assign-
ment operator) stores the reference value in the reference stack1 declared on the left-
hand side of the assignment operator. The reference stack1 can now be used to
manipulate the object whose reference value is stored in it.

Analogously, the following declaration statement declares the reference stack2 to
be of class CharStack, creates an object of class CharStack, and assigns its reference
value to the reference stack2:

CharStack stack2 = new CharStack(5); // Stack length: 5 chars

Each object that is created has its own copy of the fields declared in the class dec-
laration in Example 1.1. That is, the two stack objects, referenced by stack1 and
stack2, will have their own stackArray and topOfStack fields.

The purpose of the constructor call on the right-hand side of the new operator is
to initialize the newly created object. In this particular case, for each new CharStack
object created using the new operator, the constructor at (2) in Example 1.1 creates
an array of characters. The length of this array is given by the value of the argu-
ment to the constructor. The constructor also initializes the topOfStack field.

Figure 1.2 shows the UML notation for objects. The graphical representation of an
object is very similar to that of a class. Figure 1.2 shows the canonical notation,
where the name of the reference denoting the object is prefixed to the class name
with a colon (:). If the name of the reference is omitted, as in Figure 1.2b, this
denotes an anonymous object. Since objects in Java do not have names, but rather
are denoted by references, a more elaborate notation is shown in Figure 1.2c, where
references of the CharStack class explicitly refer to CharStack objects. In most cases,
the more compact notation will suffice.

Figure 1.2 UML Notation for Objects

:CharStack

(c) Explicit References for Java Objects

stack2:CharStack

(a) Standard Notation for Objects

stack1:Ref(CharStack) :CharStack

:CharStack

(b) Anonymous Object

stack2:Ref(CharStack)

stack1:CharStack

PGJC4_JSE8_OCA.book Page 5 Monday, June 20, 2016 2:31 PM

6 CHAPTER 1: BASICS OF JAVA PROGRAMMING

Object Aliases
Several references can refer to the same object, meaning that they store the refer-
ence value of the same object. Such references are called aliases. The object can be
manipulated via any one of its aliases, as each one refers to the same object.

// Create two distinct stacks of chars.
CharStack stackA = new CharStack(12); // Stack length: 12 chars
CharStack stackB = new CharStack(6); // Stack length: 6 chars

stackB = stackA; // (1) aliases after assignment
// The stack previously referenced by stackB can now be garbage collected.

Two stack objects are created in the preceding code. Before the assignment at (1),
the situation is as depicted in Figure 1.3a. After the assignment at (1), the references
stackA and stackB will denote the same stack, as depicted in Figure 1.3b. The refer-
ence value in stackA is assigned to stackB. The references stackA and stackB are
aliases after the assignment, as they refer to the same object. What happens to the
stack object that was denoted by the reference stackB before the assignment? When
objects are no longer in use, their memory is, if necessary, reclaimed and reallo-
cated for other objects. This process is called automatic garbage collection. Garbage
collection in Java is taken care of by the runtime environment.

1.4 Instance Members

Each object created will have its own copies of the fields defined in its class. The
fields of an object are called instance variables. The values of the instance variables in
an object constitute its state. Two distinct objects can have the same state if their
instance variables have the same values. The methods of an object define its behav-
ior; such methods are called instance methods. It is important to note that these meth-
ods pertain to each object of the class. In contrast, the implementation of the methods
is shared by all instances of the class. Instance variables and instance methods, which

Figure 1.3 Aliases

stackA:Ref(CharStack) :CharStack

stackB:Ref(CharStack) :CharStack

stackA:Ref(CharStack) :CharStack

stackB:Ref(CharStack) :CharStack

(a) Before assignment at (1)

(b) After assignment at (1)

PGJC4_JSE8_OCA.book Page 6 Monday, June 20, 2016 2:31 PM

1.5: STATIC MEMBERS 7

belong to objects, are collectively called instance members, to distinguish them from

static members, which belong to the class only. Static members are discussed in §1.5.

Invoking Methods
Objects communicate by message passing. As a consequence, an object can be

made to exhibit a particular behavior by sending the appropriate message to the

object. In Java, this is done by calling a method on the object using the binary dot

(.) operator. A method call spells out the complete message: the object that is the

receiver of the message, the method to be invoked, and the arguments to be passed

to the method, if any. The method invoked on the receiver can also send informa-

tion back to the sender, via a single return value. The method called must be one

that is defined for the object; otherwise, the compiler reports an error.

CharStack stack = new CharStack(5); // Create a stack
stack.push('J'); // (1) Character 'J' pushed
char c = stack.pop(); // (2) One character popped and returned: 'J'
stack.printStackElements(); // (3) Compile-time error: No such method in CharStack

The sample code given here invokes methods on the object denoted by the refer-

ence stack. The method call at (1) pushes one character on the stack, and the

method call at (2) pops one character off the stack. Both the push() and pop() meth-

ods are defined in the class CharStack. The push() method does not return any

value, but the pop() method returns the character popped. Trying to invoke a

method named printStackElements on the stack results in a compile-time error, as

no such method is defined in the class CharStack.

The dot (.) notation can also be used with a reference to access the fields of an

object. Use of the dot notation is governed by the accessibility of the member. The

fields in the class CharStack have private accessibility, indicating that they are not

accessible from outside the class. Thus the following code in a client of the

CharStack class will not compile:

stack.topOfStack++; // Compile-time error: topOfStack is not visible.

1.5 Static Members

In some cases, certain members should belong only to the class; that is, they should

not be part of any instance of the class. As an example, suppose a class wants to keep

track of how many objects of the class have been created. Defining a counter as an

instance variable in the class declaration for tracking the number of objects created

does not solve the problem. Each object created will have its own counter field.

Which counter should then be updated? The solution is to declare the counter field

as being static. Such a field is called a static variable. It belongs to the class, rather

than to any specific object of the class. A static variable is initialized when the class

is loaded at runtime. Similarly, a class can have static methods that belong to the class,

rather than to any specific objects of the class. Static variables and static methods are

collectively known as static members, and are declared with the keyword static.

PGJC4_JSE8_OCA.book Page 7 Monday, June 20, 2016 2:31 PM

8 CHAPTER 1: BASICS OF JAVA PROGRAMMING

Figure 1.4 shows the class diagram for the class CharStack. It has been augmented
by two static members, whose names are underlined. The augmented definition of
the CharStack class is given in Example 1.2. The field counter is a static variable
declared at (1). It will be allocated and initialized to the default value 0 when the
class is loaded. Each time an object of the CharStack class is created, the constructor
at (2) is executed. The constructor explicitly increments the counter in the class. The
method getInstanceCount() at (3) is a static method belonging to the class. It returns
the counter value when called.

Example 1.2 Static Members in Class Declaration

// File: CharStack.java
public class CharStack {
 // Instance variables:
 private char[] stackArray; // The array implementing the stack
 private int topOfStack; // The top of the stack

 // Static variable
 private static int counter; // (1)

 // Constructor now increments the counter for each object created.
 public CharStack(int capacity) { // (2)
 stackArray = new char[capacity];
 topOfStack = -1;
 counter++;
 }

 // Instance methods:
 public void push(char element) { stackArray[++topOfStack] = element; }
 public char pop() { return stackArray[topOfStack--]; }
 public char peek() { return stackArray[topOfStack]; }
 public boolean isEmpty() { return topOfStack == -1; }
 public boolean isFull() { return topOfStack == stackArray.length - 1; }

 // Static method (3)
 public static int getInstanceCount() { return counter; }
}

Figure 1.4 Class Diagram Showing Static Members of a Class

CharStack

stackArray

...
peek()

topOfStack

push()
pop()

counter

getInstanceCount()

PGJC4_JSE8_OCA.book Page 8 Monday, June 20, 2016 2:31 PM

1.5: STATIC MEMBERS 9

Figure 1.5 shows the classification of the members in the class CharStack, using the
terminology we have introduced so far. Table 1.1 provides a summary of the termi-
nology used in defining members of a class.

Clients can access static members in the class by using the class name. The follow-
ing code invokes the getInstanceCount() method in the class CharStack:

int count = CharStack.getInstanceCount(); // Class name to invoke static method

Static members can also be accessed via object references, although doing so is con-
sidered bad style:

CharStack myStack = new CharStack(20);
int count = myStack.getInstanceCount(); // Reference invokes static method

Static members in a class can be accessed both by the class name and via object ref-
erences, but instance members can be accessed only by object references.

Figure 1.5 Members of a Class

Table 1.1 Terminology for Class Members

Instance members The instance variables and instance methods of an object. They
can be accessed or invoked only through an object reference.

Instance variable A field that is allocated when the class is instantiated (i.e., when
an object of the class is created). Also called a non-static field or
just a field when the context is obvious.

Instance method A method that belongs to an instance of the class. Objects of the
same class share its implementation.

Continues

Class Name CharStack

Static members belong to the class

Objects

stackArray
topOfStack

Instance variables

push()
pop()
peek()
isEmpty()
isFull()

Instance methods

Instance members belong to objects

Methods

Fields

Members

Class

Static variables

counter

Static methods

getInstanceCount()

Attributes

Behaviour

PGJC4_JSE8_OCA.book Page 9 Monday, June 20, 2016 2:31 PM

10 CHAPTER 1: BASICS OF JAVA PROGRAMMING

1.6 Inheritance

There are two fundamental mechanisms for building new classes from existing ones:
inheritance and aggregation. It makes sense to inherit from an existing class Vehicle to
define a class Car, since a car is a vehicle. The class Vehicle has several parts; therefore,
it makes sense to define a composite object of the class Vehicle that has constituent
objects of such classes as Engine, Axle, and GearBox, which make up a vehicle.
Inheritance is illustrated here by an example that implements a stack of characters that
can print its elements on the terminal. This new stack has all the properties and behav-
iors of the CharStack class, along with the additional capability of printing its elements.
Given that this printable stack is a stack of characters, it can be derived from the
CharStack class. This relationship is shown in Figure 1.6. The class PrintableCharStack
is called the subclass, and the class CharStack is called the superclass. The CharStack class
is a generalization for all stacks of characters, whereas the class PrintableCharStack is
a specialization of stacks of characters that can also print their elements.

In Java, deriving a new class from an existing class requires the use of the extends
clause in the subclass declaration. A subclass can extend only one superclass. The
subclass can inherit members of the superclass. The following code fragment
implements the PrintableCharStack class:

class PrintableCharStack extends CharStack { // (1)
 // Instance method
 public void printStackElements() { // (2)
 // ... implementation of the method...
 }

Static members The static variables and static methods of a class. They can be
accessed or invoked either by using the class name or through an
object reference.

Static variable A field that is allocated when the class is loaded. It belongs to the
class, and not to any specific object of the class. Also called a static
field or a class variable.

Static method A method that belongs to the class, and not to any object of the
class. Also called a class method.

Figure 1.6 Class Diagram Depicting Inheritance Relationship

Table 1.1 Terminology for Class Members (Continued)

PrintableCharStack

Superclass

Subclass

Generalization

Specialization

CharStack

PGJC4_JSE8_OCA.book Page 10 Monday, June 20, 2016 2:31 PM

1.6: INHERITANCE 11

 // The constructor calls the constructor of the superclass explicitly.
 public PrintableCharStack(int capacity) { super(capacity); } // (3)
}

The PrintableCharStack class extends the CharStack class at (1). Implementing the
printStackElements() method in the PrintableCharStack class requires access to the
field stackArray from the superclass CharStack. However, this field is private and,
therefore, not accessible in the subclass. The subclass can access these fields if the
accessibility of the fields is changed to protected in the CharStack class. Example 1.3
uses a version of the class CharStack, which has been modified to support this
access. Implementation of the printStackElements() method is shown at (2). The
constructor of the PrintableCharStack class at (3) calls the constructor of the super-
class CharStack to initialize the stack properly.

Example 1.3 Defining a Subclass

// File: CharStack.java
public class CharStack {
 // Instance variables
 protected char[] stackArray; // The array that implements the stack
 protected int topOfStack; // The top of the stack

 // The rest of the definition is the same as in Example 1.2.
}

// File: PrintableCharStack.java
public class PrintableCharStack extends CharStack { // (1)

 // Instance method
 public void printStackElements() { // (2)
 for (int i = 0; i <= topOfStack; i++)
 System.out.print(stackArray[i]); // Print each char on terminal
 System.out.println();
 }

 // Constructor calls the constructor of the superclass explicitly.
 PrintableCharStack(int capacity) { super(capacity); } // (3)
}

Objects of the PrintableCharStack class will respond just like the objects of the
CharStack class, but they also have the additional functionality defined in the
subclass:

PrintableCharStack pcStack = new PrintableCharStack(3);
pcStack.push('H');
pcStack.push('i');
pcStack.push('!');
pcStack.printStackElements(); // Prints "Hi!" on the terminal

PGJC4_JSE8_OCA.book Page 11 Monday, June 20, 2016 2:31 PM

12 CHAPTER 1: BASICS OF JAVA PROGRAMMING

1.7 Associations: Aggregation and Composition

An association defines a static relationship between objects of two classes. One
such association, called aggregation, expresses how an object uses other objects.
Java supports aggregation of objects by reference, since objects cannot contain
other objects explicitly. The aggregate object usually has fields that denote its
constituent objects. A constituent object can be shared with other aggregate
objects.

For example, an object of class Airplane might have a field that denotes an object of
class Pilot. This Pilot object of an Airplane object might be shared among other
aggregate objects (not necessarily Airplane objects) once the pilot has finished duty
on one airplane. In fact, the Pilot object can still be used even when its Airplane
object no longer exists. This aggregation relationship is depicted by the UML
diagram in Figure 1.7 (empty diamond), showing that each object of the Airplane
class has zero or one object of class Pilot associated with it.

The aggregate association can be made stronger if the constituent objects cannot
be shared with other aggregate objects—for example, an Airplane object with two
Wing objects. The Wing objects cannot be shared and can exist only with their
Airplane object; that is, the Airplane object has ownership of its Wing objects. Con-
versely, the Wing objects are a part of their Airplane object. This stronger
aggregation association is called composition and is depicted by the UML diagram
in Figure 1.7 (filled diamond), showing that each object of the Airplane class owns
two objects of class Wing.

In the case of the CharStack class used in the earlier examples, each object of this
class has a field to store the reference value of an array object that holds the char-
acters. It would not be a good idea to share this array with other stack objects. The
stack owns the array of characters. The relationship between the stack object and
its constituent array object can be expressed by composition (Figure 1.8), showing
that each object of the CharStack class will own one array object of type char associ-
ated with it.

Figure 1.7 Class Diagram Depicting Associations

hasAirplane

pilot
rightWing
leftWing

... Wing
2

owns

0..1
Pilot

0..1

1

Aggregation

Composition

PGJC4_JSE8_OCA.book Page 12 Monday, June 20, 2016 2:31 PM

1.8: TENETS OF JAVA 13

1.8 Tenets of Java

• Code in Java must be encapsulated in classes.
• There are two kinds of values in Java: objects that are instances of classes or

arrays, and atomic values of primitive data types.
• References store reference values that denote objects, and are used to manipu-

late objects.
• Objects in Java cannot contain other objects; they can only have references to

other objects.
• During execution, reclamation of objects that are no longer in use is managed

by the runtime environment.

Review Questions

1.1 Which statement is true about methods?

Select the one correct answer.
(a) A method is an implementation of an abstraction.
(b) A method is an attribute defining the property of a particular abstraction.
(c) A method is a category of objects.
(d) A method is an operation defining the behavior for a particular abstraction.
(e) A method is a blueprint for making operations.

1.2 Which statement is true about objects?

Select the one correct answer.
(a) An object is what classes are instantiated from.
(b) An object is an instance of a class.
(c) An object is a blueprint for creating concrete realization of abstractions.
(d) An object is a reference.
(e) An object is a variable.

Figure 1.8 Class Diagram Depicting Composition

CharStack

stackArray
topOfStack

push()
pop()
peek()
...

char[]
1

owns

PGJC4_JSE8_OCA.book Page 13 Monday, June 20, 2016 2:31 PM

14 CHAPTER 1: BASICS OF JAVA PROGRAMMING

1.3 Which is the first line of a constructor declaration in the following code?
public class Counter { // (1)
 int current, step;
 public Counter(int startValue, int stepValue) { // (2)
 setCurrent(startValue); // (3)
 setStep(stepValue);
 }
 public int getCurrent() { return current; } // (4)
 public void setCurrent(int value) { current = value; } // (5)
 public void setStep(int stepValue) { step = stepValue; } // (6)
}

Select the one correct answer.
(a) (1)
(b) (2)
(c) (3)
(d) (4)
(e) (5)
(f) (6)

1.4 Given that Thing is a class, how many objects and how many references are created
by the following code?

Thing item, stuff;
item = new Thing();
Thing entity = new Thing();

Select the two correct answers.
(a) One object is created.
(b) Two objects are created.
(c) Three objects are created.
(d) One reference is created.
(e) Two references are created.
(f) Three references are created.

1.5 Which statement is true about instance members?
Select the one correct answer.
(a) An instance member is also called a static member.
(b) An instance member is always a field.
(c) An instance member is never a method.
(d) An instance member belongs to an instance, not to the class as a whole.
(e) An instance member always represents an operation.

1.6 How do objects communicate in Java?
Select the one correct answer.
(a) They communicate by modifying each other’s fields.
(b) They communicate by modifying the static variables of each other’s classes.
(c) They communicate by calling each other’s instance methods.
(d) They communicate by calling static methods of each other’s classes.

PGJC4_JSE8_OCA.book Page 14 Monday, June 20, 2016 2:31 PM

1.9: JAVA PROGRAMS 15

1.7 Given the following code, which statements are true?
class A {
 protected int value1;
}

class B extends A {
 int value2;
}

Select the two correct answers.
(a) Class A extends class B.
(b) Class B is the superclass of class A.
(c) Class A inherits from class B.
(d) Class B is a subclass of class A.
(e) Objects of class A have a field named value2.
(f) Objects of class B have a field named value1.

1.8 Given the following code, which statements express the most accurate association?
class Carriage { }

class TrainDriver { }

class Train {
 private Carriage[] carriages;
 private TrainDriver driver;
 Train(TrainDriver trainDriver, int noOfCarriages) {
 carriages = new Carriage[noOfCarriages];
 driver = trainDriver;
 }
 void insertCarriage(Carriage newCarriage) { /* ... */ }
}

Select the three correct answers.
(a) A Train object has an array of Carriage objects.
(b) A Train object owns an array of Carriage objects.
(c) A Train object owns Carriage objects.
(d) A Train object has a TrainDriver object.
(e) A Train object owns a TrainDriver object.
(f) A TrainDriver object is part of a Train object.
(g) An array of Carriage objects is part of a Train object.
(h) Carriage objects are part of a Train object.

1.9 Java Programs

A Java source file can contain more than one class declaration. Each source file name
has the extension .java. The JDK (Java Development Kit) enforces the rule that any
class in the source file that has public accessibility must be declared in its own file,
meaning that such a public class must be declared in a source file whose file name

PGJC4_JSE8_OCA.book Page 15 Monday, June 20, 2016 2:31 PM

16 CHAPTER 1: BASICS OF JAVA PROGRAMMING

comprises the name of this public class with .java as its extension. This rule implies
that a source file can contain at most one public class. If the source file contains a
public class, the file naming rule is enforced by the JDK.
Each class declaration in a source file is compiled into a separate class file, contain-
ing Java bytecode. The name of this file comprises the name of the class with .class
as its extension. The JDK provides tools for compiling and running programs, as
explained in the next section. The classes in the Java SE platform API are already
compiled, and the JDK tools know where to find them.

1.10 Sample Java Application

The term application is just a synonym for a program, referring to source code that
is compiled and directly executed. To create an application in Java, the program
must have a class that defines a method named main, which is the starting point for
the execution of any application.

Essential Elements of a Java Application
Example 1.4 is an example of an application in which a client uses the CharStack
class to reverse a string of characters.

Example 1.4 An Application

// File: CharStack.java
public class CharStack {
 // Same as in Example 1.2.
}

// File: Client.java
public class Client {

 public static void main(String[] args) {

 // Create a stack.
 CharStack stack = new CharStack(40);

 // Create a string to push on the stack:
 String str = "!no tis ot nuf era skcatS";
 System.out.println("Original string: " + str); // (1)
 int length = str.length();

 // Push the string char by char onto the stack:
 for (int i = 0; i < length; i++) {
 stack.push(str.charAt(i));
 }

PGJC4_JSE8_OCA.book Page 16 Monday, June 20, 2016 2:31 PM

1.10: SAMPLE JAVA APPLICATION 17

 System.out.print("Reversed string: "); // (2)
 // Pop and print each char from the stack:
 while (!stack.isEmpty()) { // Check if the stack is not empty.
 System.out.print(stack.pop());
 }
 System.out.println(); // (3)
 }
}

Output from the program:

Original string: !no tis ot nuf era skcatS
Reversed string: Stacks are fun to sit on!

The public class Client defines a method with the name main. To start the applica-
tion, the main() method in this public class is invoked by the Java interpreter, also
called the Java Virtual Machine (JVM). The method header of this main() method
must be declared as shown in the following method stub:

public static void main(String[] args) // Method header
{ /* Implementation */ }

The main() method has public accessibility—that is, it is accessible from any class.
The keyword static means the method belongs to the class. The keyword void
indicates that the method does not return any value. The parameter args is an array
of strings that can be used to pass information to the main() method when execu-
tion starts.

Compiling and Running an Application
Java source files can be compiled using the Java compiler tool javac, which is part
of the JDK.

The source file Client.java contains the declaration of the Client class. This source
file can be compiled by giving the following command at the command line (the
character > is the command prompt):

>javac Client.java

This command creates the class file Client.class containing the Java bytecode for
the Client class. The Client class uses the CharStack class, and if the file
CharStack.class does not already exist, the compiler will also compile the source
file CharStack.java.

Compiled classes can be executed by the Java interpreter java, which is also part of
the JDK. To run Example 1.4, give the following command on the command line:

>java Client
Original string: !no tis ot nuf era skcatS
Reversed string: Stacks are fun to sit on!

PGJC4_JSE8_OCA.book Page 17 Monday, June 20, 2016 2:31 PM

18 CHAPTER 1: BASICS OF JAVA PROGRAMMING

Note that only the name of the class is specified, resulting in the execution starting
in the main() method of the specified class. The application in Example 1.4 termin-
ates when the execution of the main() method is completed.

1.11 Program Output

Data produced by a program is called output. This output can be sent to different
devices. The examples presented in this book send their output to a terminal win-
dow, where the output is printed as line of characters with a cursor that advances
as characters are printed. A Java program can send its output to the terminal win-
dow using an object called standard out. This object, which can be accessed using
the public static final field out in the System class, is an object of the class
java.io.PrintStream that provides methods for printing values. These methods
convert values to their string representation and print the resulting string.

Example 1.4 illustrates the process of printing values to the terminal window. The
argument in the call to the println() method at (1) is first evaluated, and the resulting
string is printed to the terminal window. This method always terminates the current
line, which results in the cursor being moved to the beginning of the next line:

System.out.println("Original string: " + str); // (1)

The print() method at (2) prints its argument to the terminal window, but it does
not terminate the current line:

System.out.print("Reversed string: "); // (2)

To terminate a line, without printing any values, we can use the no-argument
println() method:

System.out.println(); // (3)

Formatted Output
To have more control over how the values are printed, we can create formatted out-
put. The following method of the java.io.PrintStream class can be used for this
purpose:

PrintStream printf(String format, Object... args)

The String parameter format specifies how formatting will be done. It contains
format specifications that determine how each subsequent value in the parame-
ter args will be formatted and printed. The parameter declaration Object...
args represents an array of zero or more arguments to be formatted and
printed. The resulting string from the formatting will be printed to the destina-
tion stream. (System.out will print to the standard out object.)
Any error in the format string will result in a runtime exception.

PGJC4_JSE8_OCA.book Page 18 Monday, June 20, 2016 2:31 PM

1.11: PROGRAM OUTPUT 19

The following call to the printf() method on the standard out object formats and
prints three values:

System.out.printf("Formatted values|%5d|%8.3f|%5s|%n", // Format string
 2016, Math.PI, "Hi"); // Values to format

At runtime, the following line is printed in the terminal window:
Formatted values| 2016| 3.142| Hi|

The format string is the first argument in the method call. It contains four format
specifiers. The first three are %5d, %8.3f, and %5s, which specify how the three argu-
ments should be processed. The letter in the format specifier indicates the type of
value to format. Their location in the format string specifies where the textual rep-
resentation of the arguments should be inserted. The fourth format specifier, %n, is
a platform-specific line separator. Its occurrence causes the current line to be termi-
nated, with the cursor moving to the start of the next line. All other text in the for-
mat string is fixed, including any other spaces or punctuation, and is printed
verbatim.
In the preceding example, the first value is formatted according to the first format
specifier, the second value is formatted according to the second format specifier,
and so on. The | character has been used in the format string to show how many
character positions are taken up by the text representation of each value. The out-
put shows that the int value was written right-justified, spanning five character
positions using the format specifier %5d; the double value of Math.PI took up eight
character positions and was rounded to three decimal places using the format
specifier %8.3f; and the String value was written right-justified, spanning five char-
acter positions using the format specifier %5s. The format specifier %n terminates the
current line. All other characters in the format string are printed verbatim.
Table 1.2 shows examples of some selected format specifiers that can be used to
format values. Their usage is illustrated in Example 1.5, which prints a simple
invoice.
At the top of the invoice printed by Example 1.5, the company name is printed at
(1) with a format string that contains only fixed text. The date and time of day are
printed on the same line, with leading zeros at (2). A header is then printed at (3).
The column names Item, Price, Quantity, and Amount are positioned appropriately
with the format specifications %-20s, %7s, %9s, and %8s, respectively.
Beneath the heading, the items purchased are printed at (5), (6), and (7) using the
same field widths as the column headings. The format for each item is defined by
the format string at (4). The item name is printed with the format string "%-20s",
resulting in a 20-character-wide string, left-justified. The item price and the total
amount for each type of item are printed as floating-point values using the format
specifications %7.2f and %8.2f, respectively. The quantity is printed as an integer
using the format specification %9d. The strings are left-justified, while all numbers
are right-justified. The character s is the conversion code for objects, while floating-
point and integer values are printed using the codes f and d, respectively.

PGJC4_JSE8_OCA.book Page 19 Monday, June 20, 2016 2:31 PM

20 CHAPTER 1: BASICS OF JAVA PROGRAMMING

At (8), the total cost of all items is printed using the format specification %8.2f. To
position this value correctly under the column Amount, we print the string "Total:"
using the format %-36s. The width of 36 characters is found by adding the width of
the first three columns of the invoice.

Table 1.2 Format Specifier Examples

Parameter
value

Format
spec

Example
value

String
printed Description

Integer
value

"%d" 123 "123" Occupies as many character positions
as needed.

"%6d" 123 " 123" Occupies six character positions and
is right-justified. The printed string is
padded with leading spaces, if
necessary.

"%06d" 123 "000123" Occupies six character positions and
is right-justified. The printed string is
padded with leading zeros, if
necessary.

Floating-
point
value

"%f" 4.567 "4.567000" Occupies as many character positions
as needed, but always includes six
decimal places.

"%.2f" 4.567 "4.57" Occupies as many character positions
as needed, but includes only two
decimal places. The value is rounded
in the output, if necessary.

"%6.2f" 4.567 " 4.57" Occupies six character positions,
including the decimal point, and uses
two decimal places. The value is
rounded in the output, if necessary.

Any object "%s" "Hi!" "Hi!" The string representation of the object
occupies as many character positions
as needed.

"%6s" "Hi!" " Hi!" The string representation of the object
occupies six character positions and is
right-justified.

"%-6s" "Hi!" "Hi! " The string representation of the object
occupies six character positions and is
left-justified.

PGJC4_JSE8_OCA.book Page 20 Monday, June 20, 2016 2:31 PM

1.12: THE JAVA ECOSYSTEM 21

Example 1.5 Formatted Output

// File: Invoice.java
public class Invoice {
 public static void main(String[] args) {
 System.out.printf("Secure Data Inc. "); // (1)
 System.out.printf("%02d/%02d/%04d, %02d:%02d%n%n", // (2)
 2, 13, 2016, 11, 5);
 System.out.printf("%-20s%7s%9s%8s%n", // (3)
 "Item", "Price", "Quantity", "Amount");

 int quantity = 4;
 double price = 120.25, amount = quantity*price, total = amount;
 String itemFormat = "%-20s%7.2f%9d%8.2f%n"; // (4)
 System.out.printf(itemFormat,
 "FlashDrive, 250GB", price, quantity, amount); // (5)
 quantity = 2;
 price = 455.0; amount = quantity*price; total = total + amount;
 System.out.printf(itemFormat,
 "Ultra HD, 4TB", price, quantity, amount); // (6)
 quantity = 1;
 price = 8.50; amount = quantity*price; total = total + amount;
 System.out.printf(itemFormat,
 "USB 3.0 cable", price, quantity, amount); // (7)

 System.out.printf("%-36s%8.2f%n", "Total:", total); // (8)
 }
}

Output from the program:

Secure Data Inc. 02/13/2016, 11:05

Item Price Quantity Amount
FlashDrive, 250GB 120.25 4 481.00
Ultra HD, 4TB 455.00 2 910.00
USB 3.0 cable 8.50 1 8.50
Total: 1399.50

1.12 The Java Ecosystem

Since its initial release as Java Development Kit 1.0 (JDK 1.0) in 1996, the name Java

has become synonymous with a thriving ecosystem that provides the components

and the tools necessary for developing systems for today’s multicore world. Its

diverse community, comprising a multitude of volunteers, organizations, and cor-

porations, continues to fuel its evolution and grow with its success. Many free

open-source technologies now exist that are well proven, mature, and supported,

making their adoption less daunting. These tools and frameworks provide support

for all phases of the software development life cycle and beyond.

PGJC4_JSE8_OCA.book Page 21 Monday, June 20, 2016 2:31 PM

22 CHAPTER 1: BASICS OF JAVA PROGRAMMING

There are three major Java Platforms for the Java programming language:

• Java SE (Standard Edition)

• Java EE (Enterprise Edition)

• Java ME (Micro Edition)

Each platform provides a hardware/operating system–specific JVM and an API
(application programming interface) to develop applications for that platform. The
Java SE platform provides the core functionality of the language. The Java EE plat-
form is a superset of the Java SE platform and, as the most extensive of the three
platforms, targets enterprise application development. The Java ME platform is a
subset of the Java SE platform, having the smallest footprint, and is suitable for
developing mobile and embedded applications. The upshot of this classification is
that a Java program developed for one Java platform will not necessary run under
the JVM of another Java platform. The JVM must be compatible with the Java plat-
form that was used to develop the program.

The API and the tools for developing and running Java applications are bundled
together as JDK. Just the JVM and the runtime libraries are also bundled separately
as JRE (Java Runtime Environment).

The subject of this book is Java SE 8. We recommend installing the appropriate
JDK for Java SE 8 (or a newer version) depending on the hardware and operating
system.

The rest of this section summarizes some of the factors that have contributed to the
evolution of Java from an object-oriented programming language to a full-fledged
ecosystem for developing all sorts of systems, including large-scale business sys-
tems and embedded systems for portable computing devices. A lot of jargon is
used in this section, and might be difficult to understand at the first reading, but
we recommend coming back after working through the book to appreciate the fac-
tors that have contributed to the success of Java.

Object-Oriented Paradigm
The Java programming language supports the object-oriented paradigm, in which
the properties of an object and its behavior are encapsulated in the object. The
properties and the behavior are represented by the fields and the methods of the
object, respectively. The objects communicate through method calls in a procedural
manner. Encapsulation ensures that objects are immune to tampering except when
manipulated through their public interface. Encapsulation exposes only what an
object does and not how it does it, so that its implementation can be changed with
minimum impact on its clients. Some basic concepts of object-oriented program-
ming, such as inheritance and aggregation, were introduced earlier in this chapter,
and subsequent chapters will expand on this topic.

PGJC4_JSE8_OCA.book Page 22 Monday, June 20, 2016 2:31 PM

1.12: THE JAVA ECOSYSTEM 23

Above all, object-oriented system development promotes code reuse where exist-
ing objects can be reused to implement new objects. It also facilitates implementa-
tion of large systems, allowing their decomposition into manageable subsystems.

Interpreted: The JVM
Java programs are compiled to bytecode that is interpreted by the JVM. Various
optimization technologies (e.g., just-in-time [JIT] delivery) have led to the JVM
becoming a lean and mean virtual machine with regard to performance, stability,
and security. Many other languages, such as Scala, Groovy, and Clojure, now com-
pile to bytecode and seamlessly execute on the JVM. The JVM has thus evolved
into an ecosystem in its own right.

Architecture-Neutral and Portable Bytecode
The often-cited slogan “Write once, run everywhere” is true only if a compatible
JVM is available for the hardware and software platform. In other words, to run
Java SE applications under Windows 10 on a 64-bit hardware architecture, the right
JVM must be installed. Fortunately, the JVM has been ported to run under most
platforms and operative systems that exist today, including hardware devices such
as smart cards, mobile devices, and home appliances.

The specification of the bytecode is architecture neutral, meaning it is independent
of any hardware architecture. It is executed by a readily available hardware and
operating system–specific JVM. The portability of the Java bytecode thus eases the
burden of cross-platform system development.

Simplicity
Language design of Java has been driven by a desire to simplify the programming
process. Although Java borrows heavily from the C++ programming language,
certain features that were deemed problematic were not incorporated into its
design. For example, Java does not have a preprocessor, and it does not allow
pointer handling, user-defined operator overloading, or multiple class inheritance.

Java opted for automatic garbage collection, which frees the programmer from
dealing with many issues related to memory management, such as memory leaks.

However, the jury is still out on whether the syntax of nested classes or introduc-
tion of wild cards for generics can be considered simple.

Dynamic and Distributed
The JVM can dynamically load class libraries from the local file system as well as
from machines on the network, when those libraries are needed at runtime. This

PGJC4_JSE8_OCA.book Page 23 Monday, June 20, 2016 2:31 PM

24 CHAPTER 1: BASICS OF JAVA PROGRAMMING

feature facilitates linking the code as and when necessary during the execution of
a program. It is also possible to query programmatically a class or an object at run-
time about its meta-information, such as its methods and fields.

Java provides extensive support for networking to build distributed systems,
where objects are able to communicate across networks using various communica-
tion protocols and technologies, such as Remote Method Invocation (RMI) and
socket connections.

Robust and Secure
Java promotes the development of reliable, robust, and secure systems. It is a
strong statically typed language: The compiler guarantees runtime execution if the
code compiles without errors. Elimination of pointers, runtime index checks for
arrays and strings, and automatic garbage collection are some of the features of
Java that promote reliability. The exception handling feature of Java is without
doubt the main factor that facilitates the development of robust systems.

Java provides multilevel protection from malicious code. The language does not
allow direct access to memory. A bytecode verifier determines whether any
untrusted code loaded in the JVM is safe. The sandbox model is used to confine
and execute any untrusted code, limiting the damage that such code can cause.
These features, among others, are provided by a comprehensive Java security
model to ensure that application code executes securely in the JVM.

High Performance and Multithreaded
The performance of Java programs has improved significantly with various opti-
mizations that are applied to the bytecode at runtime by the JVM. The JIT feature
monitors the program at runtime to identify performance-critical bytecode (called
hotspots) that can be optimized. Such code is usually translated to machine code to
boost performance. The performance achieved by the JVM is a balance between
native code execution and interpretation of fully scripted languages, which fortu-
nately is adequate for many applications.

Java has always provided high-level support for multithreading, allowing multiple
threads of execution to perform different tasks concurrently in an application. It
has risen to the new challenges that have emerged in recent years to harness the
increased computing power made available by multicore architectures. Functional
programming, in which computation is treated as side-effects–free evaluation of
functions, is seen as a boon to meet these challenges. Java 8 brings elements of
functional-style programming into the language, providing language constructs
(lambda expressions and functional interfaces) and API support (through its Fork
& Join Framework and Stream API) to efficiently utilize the many cores to process
large amounts of data in parallel.

PGJC4_JSE8_OCA.book Page 24 Monday, June 20, 2016 2:31 PM

CHAPTER SUMMARY 25

Review Questions

1.9 Which command from the JDK should be used to compile the following source
code contained in a file named SmallProg.java?

public class SmallProg {
 public static void main(String[] args) { System.out.println("Good luck!"); }
}

Select the one correct answer.

(a) java SmallProg
(b) javac SmallProg
(c) java SmallProg.java
(d) javac SmallProg.java
(e) java SmallProg main

1.10 Which command from the JDK should be used to execute the main() method of a
class named SmallProg?

Select the one correct answer.

(a) java SmallProg
(b) javac SmallProg
(c) java SmallProg.java
(d) java SmallProg.class
(e) java SmallProg.main()

1.11 Which statement is true about Java?

Select the one correct answer.

(a) A Java program can be executed by any JVM.
(b) Java bytecode cannot be translated to machine code.
(c) Only Java programs can be executed by a JVM.
(d) A Java program can create and destroy objects.
(e) None of the above

Chapter Summary

The following topics were covered in this chapter:

• Essential elements of a Java application

• Accessing object fields and calling methods

• Compiling and running Java applications

• Formatting and printing values to the terminal window

PGJC4_JSE8_OCA.book Page 25 Monday, June 20, 2016 2:31 PM

26 CHAPTER 1: BASICS OF JAVA PROGRAMMING

• Basic terminology and concepts in OOP, and how these concepts are supported
in Java

• Factors and features of the Java ecosystem that have contributed to its evolu-
tion and success

Programming Exercise

1.1 Modify the Client class from Example 1.4 to use the PrintableCharStack class, rather
than the CharStack class from Example 1.2. Utilize the printStackElements() method
from the PrintableCharStack class. Is the new program behavior-wise any different
from Example 1.4?

PGJC4_JSE8_OCA.book Page 26 Monday, June 20, 2016 2:31 PM

